The latest medical research on Geriatric Medicine

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about geriatric medicine gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Aficamten for Symptomatic Obstructive Hypertrophic Cardiomyopathy.

N Engl J

One of the major determinants of exercise intolerance and limiting symptoms among patients with obstructive hypertrophic cardiomyopathy (HCM) is an elevated intracardiac pressure resulting from left ventricular outflow tract obstruction. Aficamten is an oral selective cardiac myosin inhibitor that reduces left ventricular outflow tract gradients by mitigating cardiac hypercontractility.

In this phase 3, double-blind trial, we randomly assigned adults with symptomatic obstructive HCM to receive aficamten (starting dose, 5 mg; maximum dose, 20 mg) or placebo for 24 weeks, with dose adjustment based on echocardiography results. The primary end point was the change from baseline to week 24 in the peak oxygen uptake as assessed by cardiopulmonary exercise testing. The 10 prespecified secondary end points (tested hierarchically) were change in the Kansas City Cardiomyopathy Questionnaire clinical summary score (KCCQ-CSS), improvement in the New York Heart Association (NYHA) functional class, change in the pressure gradient after the Valsalva maneuver, occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver, and duration of eligibility for septal reduction therapy (all assessed at week 24); change in the KCCQ-CSS, improvement in the NYHA functional class, change in the pressure gradient after the Valsalva maneuver, and occurrence of a gradient of less than 30 mm Hg after the Valsalva maneuver (all assessed at week 12); and change in the total workload as assessed by cardiopulmonary exercise testing at week 24.

A total of 282 patients underwent randomization: 142 to the aficamten group and 140 to the placebo group. The mean age was 59.1 years, 59.2% were men, the baseline mean resting left ventricular outflow tract gradient was 55.1 mm Hg, and the baseline mean left ventricular ejection fraction was 74.8%. At 24 weeks, the mean change in the peak oxygen uptake was 1.8 ml per kilogram per minute (95% confidence interval [CI], 1.2 to 2.3) in the aficamten group and 0.0 ml per kilogram per minute (95% CI, -0.5 to 0.5) in the placebo group (least-squares mean between-group difference, 1.7 ml per kilogram per minute; 95% CI, 1.0 to 2.4; P<0.001). The results for all 10 secondary end points were significantly improved with aficamten as compared with placebo. The incidence of adverse events appeared to be similar in the two groups.

Among patients with symptomatic obstructive HCM, treatment with aficamten resulted in a significantly greater improvement in peak oxygen uptake than placebo. (Funded by Cytokinetics; SEQUOIA-HCM ClinicalTrials.gov number, NCT05186818.).

Plasma biomarkers increase diagnostic confidence in patients with Alzheimer's disease or frontotemporal lobar degeneration.

Journal Alzheimers Research Therapy

The recent development of techniques to assess plasma biomarkers has changed the way the research community envisions the future of diagnosis and management of Alzheimer's disease (AD) and other neurodegenerative disorders. This work aims to provide real world evidence on the clinical impact of plasma biomarkers in an academic tertiary care center.

Anonymized clinical reports of patients diagnosed with AD or Frontotemporal Lobar Degeneration with available plasma biomarkers (Aβ42, Aβ42/Aβ40, p-tau181, p-tau231, NfL, GFAP) were independently assessed by two neurologists who expressed diagnosis and diagnostic confidence three times: (T0) at baseline based on the information collected during the first visit, (T1) after plasma biomarkers, and (T2) after traditional biomarkers (when available). Finally, we assessed whether clinicians' interpretation of plasma biomarkers and the consequent clinical impact are consistent with the final diagnosis, determined after the conclusion of the diagnostic clinical and instrumental work-up by the actual managing physicians who had complete access to all available information.

Clinicians assessed 122 reports, and their concordance ranged from 81 to 91% at the three time points. At T1, the presentation of plasma biomarkers resulted in a change of diagnosis in 2% (2/122, p = 1.00) of cases, and in increased diagnostic confidence in 76% (91/120, p < 0.001) of cases with confirmed diagnosis. The change in diagnosis and the increase in diagnostic confidence after plasma biomarkers were consistent with the final diagnosis in 100% (2/2) and 81% (74/91) of cases, respectively. At T2, the presentation of traditional biomarkers resulted in a further change of diagnosis in 13% (12/94, p = 0.149) of cases, and in increased diagnostic confidence in 88% (72/82, p < 0.001) of cases with confirmed diagnosis.

In an academic tertiary care center, plasma biomarkers supported clinicians by increasing their diagnostic confidence in most cases, despite a negligible impact on diagnosis. Future prospective studies are needed to assess the full potential of plasma biomarkers on clinical grounds.

Serum urate levels and neurodegenerative outcomes: a prospective cohort study and mendelian randomization analysis of the UK Biobank.

Journal Alzheimers Research Therapy

Previous studies on the associations between serum urate levels and neurodegenerative outcomes have yielded inconclusive results, and the causality remains unclear. This study aimed to investigate whether urate levels are associated with the risks of Alzheimer's disease and related dementias (ADRD), Parkinson's disease (PD), and neurodegenerative deaths.

This prospective study included 382,182 participants (45.7% men) from the UK Biobank cohort. Cox proportional hazards models were used to assess the associations between urate levels and risk of neurodegenerative outcomes. In the Mendelian randomization (MR) analysis, urate-related single-nucleotide polymorphisms were identified through a genome-wide association study. Both linear and non-linear MR approaches were utilized to investigate the potential causal associations.

During a median follow-up period of 12 years, we documented 5,400 ADRD cases, 2,553 PD cases, and 1,531 neurodegenerative deaths. Observational data revealed that a higher urate level was associated with a decreased risk of ADRD (hazard ratio [HR]: 0.93, 95% confidence interval [CI]: 0.90, 0.96), PD (HR: 0.87, 95% CI: 0.82, 0.91), and neurodegenerative death (HR: 0.88, 95% CI: 0.83, 0.94). Negative linear associations between urate levels and neurodegenerative events were observed (all P-values for overall < 0.001 and all P-values for non-linearity > 0.05). However, MR analyses yielded no evidence of either linear or non-linear associations between genetically predicted urate levels and the risk of the aforementioned neurodegenerative events.

Although the prospective cohort study demonstrated that elevated urate levels were associated with a reduced risk of neurodegenerative outcomes, MR analyses found no evidence of causality.

Association between untreated and treated blood pressure levels and cognitive decline in community-dwelling middle-aged and older adults in China: a longitudinal study.

Journal Alzheimers Research Therapy

Optimal blood pressure (BP) levels to reduce the long-term risk of cognitive decline remains controversial. We aimed to investigate the association between BP and anti-hypertensive treatment status with cognitive decline in older adults.

This study used data from the China Health and Retirement Longitudinal Study. Cognitive function was assessed at year 2011, 2013, 2015, and 2018. Global cognitive Z-score was calculated as the average score of episodic memory and mental intactness. BP were measured at the first and second wave. Pulse pressure (PP) was calculated as systolic BP (SBP) minus diastolic BP. Cumulative BP was calculated as the area under the curve using BP measurements from 2011 to 2013. Linear mixed models were used to assess the longitudinal association between BP-related measurements and cognitive decline.

We included 11,671 participants (47.3% men and mean age 58.6 years). Individual with BP > 140/90 mm Hg or taking anti-hypertensive medication were independently associated with accelerated cognitive decline (β=-0.014, 95% CI: -0.020 to -0.007). Individuals with anti-hypertensive medication use, but with controlled SBP to less than 120 mm Hg did not have a significantly increased risk of cognitive decline compared with normotension (β=-0.003, 95% CI: -0.021 to 0.014). Individuals on anti-hypertensive treatment with PP of more than 70 mm Hg had a significantly higher risk of cognitive decline (β=-0.033, 95% CI: -0.045 to -0.020). Regardless of anti-hypertensive treatment status, both elevated baseline and cumulative SBP and PP were found to be independently associated with accelerated cognitive decline.

Cumulatively elevated SBP, PP and uncontrolled BP were associated with subsequent cognitive decline. Effectively controlling BP with anti-hypertensive treatment may be able to preserve cognitive decline in older adults.

Acute Hyperglycemia Induced by Hyperglycemic Clamp Affects Plasma Amyloid-β in Type 2 Diabetes.

Journal of Alzheimer's Disease

Individuals with type 2 diabetes (T2D) have an increased risk of cognitive symptoms and Alzheimer's disease (AD). Mis-metabolism with aggregation of amyloid-β peptides (Aβ) play a key role in AD pathophysiology. Therefore, human studies on Aβ metabolism and T2D are warranted.

The objective of this study was to examine whether acute hyperglycemia affects plasma Aβ 1-40 and Aβ 1-42 concentrations in individuals with T2D and matched controls.

Ten participants with T2D and 11 controls (median age, 69 years; range, 66-72 years) underwent hyperglycemic clamp and placebo clamp (saline infusion) in a randomized order, each lasting 4 hours. Aβ 1-40, Aβ 1-42, and insulin-degrading enzyme (IDE) plasma concentrations were measured in blood samples taken at 0 and 4 hours of each clamp. Linear mixed-effect regression models were used to evaluate the 4-hour changes in Aβ 1-40 and Aβ 1-42 concentrations, adjusting for body mass index, estimated glomerular filtration rate, and 4-hour change in insulin concentration.

At baseline, Aβ 1-40 and Aβ 1-42 concentrations did not differ between the two groups. During the hyperglycemic clamp, Aβ decreased in the control group, compared to the placebo clamp (Aβ 1-40: p = 0.034, Aβ 1-42: p = 0.020), IDE increased (p = 0.016) during the hyperglycemic clamp, whereas no significant changes in either Aβ or IDE was noted in the T2D group.

Clamp-induced hyperglycemia was associated with increased IDE levels and enhanced Aβ 40 and Aβ 42 clearance in controls, but not in individuals with T2D. We hypothesize that insulin-degrading enzyme was inhibited during hyperglycemic conditions in people with T2D.

Sildenafil Reverses the Neuropathological Alzheimer's Disease Phenotype in Cholinergic-Like Neurons Carrying the Presenilin 1 E280A Mutation.

Journal of Alzheimer's Disease

Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-β (Aβ) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease.

To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation.

Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25μM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy.

We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aβ fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs.

Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.

Olfactory Dysfunction and Alzheimer's Disease: A Review.

Journal of Alzheimer's Disease

 Alzheimer's disease is the most common cause of dementia, and it is one of the leading causes of death globally. Identification and validation of ...

CAIDE Score, Alzheimer's Disease Pathology, and Cognition in Cognitively Normal Adults: The CABLE Study.

Journal of Alzheimer's Disease

Cardiovascular Risk Factors, Ageing and Dementia (CAIDE) risk score serves as a credible predictor of an individual's risk of dementia. However, studies on the link of the CAIDE score to Alzheimer's disease (AD) pathology are scarce.

To explore the links of CAIDE score to cerebrospinal fluid (CSF) biomarkers of AD as well as to cognitive performance.

In the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study, we recruited 600 cognitively normal participants. Correlations between the CAIDE score and CSF biomarkers of AD as well as cognitive performance were probed through multiple linear regression models. Whether the correlation between CAIDE score and cognitive performance was mediated by AD pathology was researched by means of mediation analyses.

Linear regression analyses illustrated that CAIDE score was positively associated with tau-related biomarkers, including pTau (p <  0.001), tTau (p <  0.001), as well as tTau/Aβ42 (p = 0.008), while it was in negative association with cognitive scores, consisting of MMSE score (p <  0.001) as well as MoCA score (p <  0.001). The correlation from CAIDE score to cognitive scores was in part mediated by tau pathology, with a mediation rate varying from 3.2% to 13.2% .

A higher CAIDE score, as demonstrated in our study, was linked to more severe tau pathology and poorer cognitive performance, and tau pathology mediated the link of CAIDE score to cognitive performance. Increased dementia risk will lead to cognitive decline through aggravating neurodegeneration.

TLR4/Rac1/NLRP3 Pathway Mediates Amyloid-β-Induced Neuroinflammation in Alzheimer's Disease.

Journal of Alzheimer's Disease

Neuroinflammation plays a crucial part in the initial onset and progression of Alzheimer's disease (AD). NLRP3 inflammasome was demonstrated to get involved in amyloid-β (Aβ)-induced neuroinflammation. However, the mechanism of Aβ-triggered activation of NLRP3 inflammasome remains poorly understood.

Based on our previous data, the study aimed to identify the downstream signals that bridge the activation of TLR4 and NLRP3 inflammasome associated with Aβ.

BV-2 cells were transfected with TLR4siRNA or pretreated with a CLI-095 or NSC23766, followed by Aβ1-42 treatment. APP/PS1 mice were injected intraperitoneally with CLI-095 or NSC23766. NLRP3 inflammasome and microglia activation was detected with immunostaining and western blot. G-LISA and Rac1 pull-down activation test were performed to investigate the activation of Rac1. Real-time PCR and ELISA were used to detect the inflammatory cytokines. Aβ plaques were assessed by western blotting and immunofluorescence staining. Morris water maze test was conducted to determine the spatial memory in mice.

Rac1 and NLRP3 inflammasome were activated by Aβ in both in vitro and in vivo experiments. Inhibition of TLR4 reduced the activity of Rac1 and NLRP3 inflammasome induced by Aβ1-42. Furthermore, inhibition of Rac1 blocked NLRP3 inflammasome activation mediated by TLR4. Blocking the pathway by CLI095 or NSC23766 suppressed Aβ1-42-triggered activation of microglia, reduced the expression of pro-inflammatory mediators and ameliorated the cognition deficits in APP/PS1 mice.

Our study demonstrated that TLR4/Rac1/NLRP3 pathway mediated Aβ-induced neuroinflammation, which unveiled a novel pathway and key contributors underlying the pathogenic mechanism of Aβ.

Association of Age with Dual-Task Objective Cognitive Indicators and Gait Parameters in Older Adults.

Journal of Alzheimer's Disease

Early recognition of dementia like Alzheimer's disease is crucial for disease diagnosis and treatment, and existing objective tools for early screening of cognitive impairment are limited.

To investigate age-related behavioral indicators of dual-task cognitive performance and gait parameters and to explore potential objective markers of early cognitive decline.

The community-based cognitive screening data was analyzed. Hierarchical cluster analysis and Pearson correlation analysis were performed on the 9-item subjective cognitive decline (SCD-9) scores, walking-cognitive dual-task performance, walking speed, and gait parameters of 152 participants. The significant differences of indicators that may related to cognitive decline were statistically analyzed across six age groups. A mathematical model with age as the independent variable and motor cognition composite score as the dependent variable was established to observe the trend of motor cognition dual-task performance with age.

Strong correlation was found between motor cognitive scores and SCD and age. Gait parameters like the mean value of ankle angle, the left-right difference rate of ankle angle and knee angle and the coefficient of variation of gait cycle showed an excellent correlation with age. Motor cognition scores showed a decreasing trend with age. The slope of motor cognition scores with age after 50 years (k = -1.06) was six times higher than that before 50 years (k = -0.18).

Cognitive performance and gait parameters in the walking-cognitive dual-task state are promising objective markers that could characterize age-related cognitive decline.

Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease.

Journal of Alzheimer's Disease

There are various molecular hypotheses regarding Alzheimer's disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD.

The study aims to enable the discovery of functionally connected multi-omic features through novel integration of multi-omic data and prior functional interactions.

We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and proteins.

When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction performance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and neurotransmitter transportation.

Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD molecular mechanism with improved details.

TDP-43 Is Associated with Subiculum and Cornu Ammonis 1 Hippocampal Subfield Atrophy in Primary Age-Related Tauopathy.

Journal of Alzheimer's Disease

TAR DNA binding protein 43 (TDP-43) has been shown to be associated with whole hippocampal atrophy in primary age-related tauopathy (PART). It is currently unknown which subregions of the hippocampus are contributing to TDP-43 associated whole hippocampal atrophy in PART.

To identify which specific hippocampal subfield regions are contributing to TDP-43-associated whole hippocampal atrophy in PART.

A total of 115 autopsied cases from the Mayo Clinic Alzheimer Disease Research Center, Neurodegenerative Research Group, and the Mayo Clinic Study of Aging were analyzed. All cases underwent antemortem brain volumetric MRI, neuropathological assessment of the distribution of Aβ (Thal phase), and neurofibrillary tangle (Braak stage) to diagnose PART, as well as assessment of TDP-43 presence/absence in the amygdala, hippocampus and beyond. Hippocampal subfield segmentation was performed using FreeSurfer version 7.4.1. Statistical analyses using logistic regression were performed to assess for associations between TDP-43 and hippocampal subfield volumes, accounting for potential confounders.

TDP-43 positive patients (n = 37, 32%), of which 15/15 were type-α, had significantly smaller whole hippocampal volumes, and smaller volumes of the body and tail of the hippocampus compared to TDP-43 negative patients. Subfield analyses revealed an association between TDP-43 and the molecular layer of hippocampal body and the body of cornu ammonis 1 (CA1), subiculum, and presubiculum regions. There was no association between TDP-43 stage and subfield volumes.

Whole hippocampal volume loss linked to TDP-43 in PART is mainly due to volume loss occurring in the molecular layer, CA1, subiculum and presubiculum of the hippocampal body.