The latest medical research on Biochemical Genetics

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about biochemical genetics gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Interferon Regulatory Factor 4: An Alternative Marker for Plasma Cells in Daratumumab-Treated Patients With Multiple Myeloma.

Biochemistry

Anti-CD38 therapeutic modalities (e.g., daratumumab) can impede classical CD38 and CD138 gating use for plasma cell (PC) detection in multiple myeloma (MM) patients with minimal residual disease (MRD). We assessed the applicability of CD229, CD269, and interferon regulatory factor (IRF-4) for PC detection in MM MRD patients.

Bone marrow samples were collected from patients with MM. Through multiparameter flow cytometry, we evaluated the suitability of CD229, CD269, and IRF-4 for distinguishing PCs from other hematopoietic cells and compared their expression pattern on normal PCs (nPCs) and aberrant PCs (aPCs). We also assessed IRF-4 expression stability after sample storage under different conditions. A 10-color MRD antibody panel was used to determine whether IRF-4 is an alternative primary PC-gating marker for MM MRD assessment.

IRF-4 was expressed specifically on all PCs; its mean fluorescence intensity (MFI) was highest on PCs among all hematopoietic cells. This MFI did not decrease even after sample storage at 4°C or 25°C for 72 h. In all 42 MRD assessment samples, except for samples (n = 10) with no PCs, the use of IRF-4 enabled accurate nPC (n = 12), aPC (n = 13), and nPC + aPC (n = 7) identification. Even samples from daratumumab-treated patients had high IRF-4 MFI, with no difference between pre-treatment and post-treatment (n = 7; p = 0.610).

IRF-4 demonstrates high MFI on PCs, and it is not expressed on other leukocytes. In MM patients with MRD, daratumumab treatment does not affect IRF-4 expression. IRF-4 is a promising marker for PC identification in MRD assessment of MM patients undergoing anti-CD38 therapy.

Deep Learning-Based Blood Abnormalities Detection as a Tool for VEXAS Syndrome Screening.

Biochemistry

VEXAS is a syndrome described in 2020, caused by mutations of the UBA1 gene, and displaying a large pleomorphic array of clinical and hematological features. Nevertheless, these criteria lack significance to discriminate VEXAS from other inflammatory conditions at the screening step. This work hence first focused on singling out dysplastic features indicative of the syndrome among peripheral blood (PB) polymorphonuclears (PMN). A deep learning algorithm is then proposed for automatic detection of these features.

A multicentric dataset, comprising 9514 annotated PMN images was gathered, including UBA1 mutated VEXAS (n = 25), UBA1 wildtype myelodysplastic (n = 14), and UBA1 wildtype cytopenic patients (n = 25). Statistical analysis on a subset of patients was performed to screen for significant abnormalities. Detection of these features on PB was then automated with a convolutional neural network (CNN) for multilabel classification.

Significant differences were observed in the proportions of PMNs with pseudo-Pelger, nuclear spikes, vacuoles, and hypogranularity between patients with VEXAS and both cytopenic and myelodysplastic controls. Automatic detection of these abnormalities yielded AUCs in the range [0.85-0.97] and a F1-score of 0.70 on the test set. A VEXAS screening score was proposed, leveraging the model outputs and predicting the UBA1 mutational status with 0.82 sensitivity and 0.71 specificity on the test patients.

This study suggests that computer-assisted analysis of PB smears, focusing on suspected VEXAS cases, can provide valuable insights for determining which patients should undergo molecular testing. The presented deep learning approach can help hematologists direct their suspicions before initiating further analyses.

Frozen/Thawed Samples Can Replace Fresh Samples for Assignment of ISI to Secondary Thromboplastin Standards for Multiple Reagent/Instrument Combinations: Data to Support Possible Revision of WHO Guidelines.

Biochemistry

Not a part of any clinical trial.

We investigated the effect of freezing and thawing samples before usage in ISI calibrations of secondary standards.

Multiple reagent/instruments were tested to identify the degree of difference between a fresh sample ISI calibration and one performed on frozen-thawed samples. Where possible, the two ISI calibrations were performed on the same sample set. Alternatively, a separate set of samples from different patients was used.

The difference in ISI values was <3% for those datasets where the same samples were used, and <6% for those datasets where two sample sets were used. Additionally, other parameters required for a valid ISI calibration showed only minor differences-some calibrations showed fewer outliers in the frozen-thawed datasets. Mean normal prothrombin time for the international reference thromboplastins was <3.5% different across four different calibrations (two for rabbit thromboplastin and two for recombinant human thromboplastin).

This modification to the WHO guidelines would facilitate the recruitment of test plasmas in advance of calibration solving the problem of requiring availability of fresh patient samples with a range of INRs in a 5-h window.

Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine.

Cell and Tissue Research

This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroen...

Decreased plasma gelsolin fosters a fibrotic tumor microenvironment and promotes chemoradiotherapy resistance in esophageal squamous cell carcinoma.

Biomedical Science

Stromal fibrosis is highly associated with therapeutic resistance and poor survival in esophageal squamous cell carcinoma (ESCC) patients. Low expression of plasma gelsolin (pGSN), a serum abundant protein, has been found to correlate with inflammation and fibrosis. Here, we evaluated pGSN expression in patients with different stages of cancer and therapeutic responses, and delineated the molecular mechanisms involved to gain insight into therapeutic strategies for ESCC.

Circulating pGSN level in ESCC patients was determined by enzyme-linked immunosorbent assay analysis, and the tissue microarray of tumors was analyzed by immunohistochemistry staining. Cell-based studies were performed to investigate cancer behaviors and molecular mechanisms, and mouse models were used to examine the pGSN-induced tumor suppressive effects in vivo.

Circulating pGSN expression is distinctively decreased during ESCC progression, and low pGSN expression correlates with poor therapeutic responses and poor survival. Methylation-specific PCR analysis confirmed that decreased pGSN expression is partly attributed to the hypermethylation of the GSN promoter, the gene encoding pGSN. Importantly, cell-based immunoprecipitation and protein stability assays demonstrated that pGSN competes with oncogenic tenascin-C (TNC) for the binding and degradation of integrin αvβ3, revealing that decreased pGSN expression leads to the promotion of oncogenic signaling transduction in cancer cells and fibroblasts. Furthermore, overexpression of pGSN caused the attenuation of TNC expression and inactivation of cancer-associated fibroblast (CAF), thereby leading to tumor growth inhibition in mice.

Our results demonstrated that GSN methylation causes decreased secretion of pGSN, leading to integrin dysregulation, oncogenic TNC activation, and CAF formation. These findings highlight the role of pGSN in therapeutic resistance and the fibrotic tumor microenvironment of ESCC.

Current landscape of mRNA technologies and delivery systems for new modality therapeutics.

Biomedical Science

Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents w...

A new digital droplet PCR method for looking at epigenetics in diffuse large B-cell lymphomas: The role of BMI1, EZH2, and USP22 genes.

Biochemistry

Epigenetics has been shown to be relevant in oncology: BMI1 overexpression has been reported in leukemias, EZH2 mutations have been found in follicular lymphoma, and USP22 seems to stabilize BMI1 protein. In this study, we measured the expression of BMI1, EZH2, and USP22 in lymph nodes from 56 diffuse large B-cell lymphoma (DLBCL) patients.

A new multiplex digital droplet PCR (ddPCR) has been set up to measure the expression of 4 genes (BMI1, EZH2, USP22, and GAPDH) in the same reaction on RNA extracted from paraffin-embedded tissues.

The specificity of ddPCR was confirmed by a 100% alignment on the BLAST platform and its repeatability demonstrated by duplicates. A strict correlation between expression of BMI1 and EZH2 and BMI1 and USP22 has been found, and high expression of these genes was correlated with extra-nodal lymphomas. Progression-free survival (PFS) and overall survival (OS) were conditioned by IPI, bone marrow infiltration, and the complete response achievement. High levels of BMI1 and USP22 did not condition the response to therapy, but impaired the PFS, especially for patients defined at "high risk" based on the cell of origin (no germinal center [GCB]), high BCL2 expression, and IPI 3-5. In this subgroup, the probability of relapse/progression was twice higher than that of patients carrying low BMI1 and USP22 levels.

High expression of BMI1 and of USP22 might be a poor prognostic factor in DLBCL, and might represent the target for novel inhibitors.

Causal effects of female reproductive features on nonalcoholic fatty liver disease: A mendelian randomization study.

J Gene Med

Epidemiological evidence on the associations between female reproductive features and nonalcoholic fatty liver disease (NAFLD) is conflicting. To explore their causalities, we conducted a Mendelian randomization (MR) study.

Summary-level data were obtained, and univariable MR was performed to explore the causalities between female reproductive features and NAFLD. And we performed multivariable MR and MR mediation analysis to explore the mediation effects of educational attainment (EA) and body mass index (BMI) for these associations. Sensitivity analyses were performed to evaluate pleiotropy and heterogeneity.

There were causal effects of age at menarche (AAMA) (odds ratio [OR]: 0.817, 95% confidence interval [CI]: 0.736-0.907, per year-increase), age at first birth (AFB) (OR: 0.851, 95%CI: 0.791-0.926, per year-increase) and age at first sexual intercourse (AFS) (OR: 0.676, 95%CI: 0.511-0.896, per standard deviation-increase) on NAFLD risk. Besides, the causal effects were also observed on NAFLD phenotypes including liver fat content (LFC) and alanine aminotransferase (ALT). Further mediation analysis showed that BMI mediated partial proportion of effects of AAMA and AFS on NAFLD/ALT, AFB on NAFLD/LFC/ALT, while EA mediated partial proportion of effects of AFB on NAFLD/LFC/ALT, and AFS on NAFLD/ALT.

This study provided convincing evidence that early AAMA, AFB, and AFS were risk factors for NAFLD. Reproductive health education, obesity management, and education spread might be the beneficial strategies for NAFLD prevention.

The complex neurochemistry of the cockroach antennal heart.

Cell and Tissue Research

The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and e...

Tudor-SN exacerbates pathological vascular remodeling by promoting the polyubiquitination of PTEN via NEDD4-1.

Biomedical Science

Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear.

The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro.

In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice.

Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.

Neuroprotective effects of intranasal extracellular vesicles from human platelet concentrates supernatants in traumatic brain injury and Parkinson's disease models.

Biomedical Science

The burgeoning field of regenerative medicine has significantly advanced with recent findings on biotherapies using human platelet lysates (HPLs), derived from clinical-grade platelet concentrates (PCs), for treating brain disorders. These developments have opened new translational research avenues to explore the neuroprotective effects of platelet-extracellular vesicles (PEVs). Their potential in managing neurodegenerative conditions like traumatic brain injury (TBI) and Parkinson's disease (PD) warrants further exploration. We aimed here to characterize the composition of a PEV preparation isolated from platelet concentrate (PC) supernatant, and determine its neuroprotective potential and neurorestorative effects in cellular and animal models of TBI and PD.

We isolated PEVs from the supernatant of clinical-grade PC collected from healthy blood donors utilizing high-speed centrifugation. PEVs were characterized by biophysical, biochemical, microscopic, and LC-MS/MS proteomics methods to unveil biological functions. Their functionality was assessed in vitro using SH-SY5Y neuronal cells, LUHMES dopaminergic neurons, and BV-2 microglial cells, and in vivo by intranasal administration in a controlled cortical impact (CCI)-TBI model using 8-weeks-old male C57/BL6 mice, and in a PD model induced by MPTP in 5-month-old male C57/BL6 mice.

PEVs varied in size from 50 to 350 nm, predominantly around 200 nm, with concentrations ranging between 1010 and 1011/mL. They expressed specific platelet membrane markers, exhibited a lipid bilayer by cryo-electron microscopy and, importantly, showed low expression of pro-coagulant phosphatidylserine. LC-MS/MS indicated a rich composition of trophic factors, including neurotrophins, anti-inflammatory agents, neurotransmitters, and antioxidants, unveiling their multifaceted biological functions. PEVs aided in the restoration of neuronal functions in SH-SY5Y cells and demonstrated remarkable neuroprotective capabilities against erastin-induced ferroptosis in dopaminergic neurons. In microglial cells, they promoted anti-inflammatory responses, particularly under inflammatory conditions. In vivo, intranasally delivered PEVs showed strong anti-inflammatory effects in a TBI mouse model and conserved tyrosine hydroxylase expression of dopaminergic neurons of the substantia nigra in a PD model, leading to improved motor function.

The potential of PEV-based therapies in neuroprotection opens new therapeutic avenues for neurodegenerative disorders. The study advocates for clinical trials to establish the efficacy of PEV-based biotherapies in neuroregenerative medicine.

Dengue NS1 interaction with lipids alters its pathogenic effects on monocyte derived macrophages.

Biomedical Science

While dengue NS1 antigen has been shown to be associated with disease pathogenesis in some studies, it has not been linked in other studies, with the reasons remaining unclear. NS1 antigen levels in acute dengue are often associated with increased disease severity, but there has been a wide variation in results based on past dengue infection and infecting dengue virus (DENV) serotype. As NS1 engages with many host lipids, we hypothesize that the type of NS1-lipid interactions alters its pathogenicity.

Primary human monocyte derived macrophages (MDMs) were co-cultured with NS1 alone or with HDL, LDL, LPS and/or platelet activating factor (PAF) from individuals with a history of past dengue fever (DF = 8) or dengue haemorrhagic fever (DHF = 8). IL-1β levels were measured in culture supernatants, and gene expression analysis carried out in MDMs. Monocyte subpopulations were assessed by flow cytometry. Hierarchical cluster analysis with Euclidean distance calculations were used to differentiate clusters. Differentially expressed variables were extracted and a classifier model was developed to differentiate between past DF and DHF.

Significantly higher levels of IL-1β were seen in culture supernatants when NS1 was co-cultured with LDL (p = 0.01, median = 45.69 pg/ml), but lower levels when NS1 was co-cultured with HDL (p = 0.05, median = 4.617 pg/ml). MDMs of those with past DHF produced higher levels of IL-1β when NS1 was co-cultured with PAF (p = 0.02). MDMs of individuals with past DHF, were significantly more likely to down-regulate RPLP2 gene expression when macrophages were co-cultured with either PAF alone, or NS1 combined with PAF, or NS1 combined with LDL. When NS1 was co-cultured with PAF, HDL or LDL two clusters were detected based on IL10 expression, but these did not differentiate those with past DF or DHF.

As RPLP2 is important in DENV replication, regulating cellular stress responses and immune responses and IL-10 is associated with severe disease, it would be important to further explore how differential expression of RPLP2 and IL-10 could lead to disease pathogenesis based on NS1 and lipid interactions.