The latest medical research on Eye Cancer

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about eye cancer gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Vitreous humor: composition, characteristics and implication on intravitreal drug delivery.

Eye Research

Intravitreal administration of drug molecules is one of the most common routes for treating posterior segment eye diseases. However, the properties...

Relationship between brachial-ankle pulse wave velocity and fundus arteriolar area calculated using a deep-learning algorithm.

Eye Research

Retinal vessels reflect alterations related to hypertension and arteriosclerosis in the physical status. Previously, we had reported a deep-learning algorithm for automatically detecting retinal vessels and measuring the total retinal vascular area in fundus photographs (VAFP). Herein, we investigated the relationship between VAFP and brachial-ankle pulse wave velocity (baPWV), which is the gold standard for arterial stiffness assessment in clinical practice.

Retinal photographs (n = 696) obtained from 372 individuals who visited the Keijinkai Maruyama Clinic for regular health checkups were used to analyze VAFP. Additionally, the baPWV was measured for each patient. Automatic retinal-vessel segmentation was performed using our deep-learning algorithm, and the total arteriolar area (AA) and total venular area (VA) were measured. Correlations between baPWV and several parameters, including AA and VA, were assessed.

The baPWV was negatively correlated with AA (R = -0.40, n = 696, P < 2.2e-16) and VA (R = -0.36, n = 696, P < 2.2e-16). Independent variables (AA, sex, age, and systolic blood pressure) selected using the stepwise method showed a significant correlation with baPWV. The estimated baPWV, calculated using a regression equation with variables including AA, showed a better correlation with the measured baPWV (R = 0.70, n = 696, P < 2.2e-16) than the estimated value without AA (R = 0.68, n = 696, P < 2.2e-16).

AA and VA were significantly correlated with baPWV. Moreover, baPWV estimated using AA correlated well with the actual baPWV. VAFP may serve as an alternative biomarker for evaluating systemic arterial stiffness.

Corneal Biomechanics Losses Caused by Refractive Surgery.

Eye Research

Recent advances, specifically in the understanding of the biomechanical properties of the cornea and its response to diseases and surgical interven...

Bioinformatical and biochemical analyses on the protective role of traditional Chinese medicine against age-related macular degeneration.

Eye Research

Age-related macular degeneration (AMD) is the commonest cause of permanent vision loss in the elderly. Traditional Chinese medicine (TCM) has long been used to treat AMD, although the underlying functional mechanisms are not understood. This study aims to predict the active ingredients through screening the chemical ingredients of anti-AMD Decoction and to elucidate the underlying mechanisms.

We collected the prescriptions for effective AMD treatment with traditional Chinese medicine and screened several Chinese medicines that were used most frequently in order to compose "anti-AMD decoction". The pharmacologically active ingredients and corresponding targets in this anti-AMD decoction were mined using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the AMD-related targets were identified through the GeneCards database. Network pharmacology was performed to construct the visual network of anti-AMD Decoction-AMD protein-protein interaction (PPI). Further, the Autodock software was adopted for molecular docking on the core active ingredients and core targets. The function of core ingredients against oxidative stress and inflammation in retinal pigment epithelial cells was assessed using biochemical assays.

We screened out 268 active ingredients in anti-AMD Decoction corresponding to 258 ingredient targets, combined with 2160 disease targets in AMD, and obtained 129 drug-disease common targets. The key core proteins were predominantly involved in inflammation. Furthermore, molecular docking showed that four potential active ingredients (Quercetin, luteolin, naringenin and hederagenin) had good affinity with the core proteins, IL6, TNF and MAPK3. Quercetin, luteolin and naringenin demonstrated capacities against oxidative stress and inflammation in human retinal pigment epithelial cells.

The data suggests that anti-AMD Decoction has multiple functional components and targets in treating AMD, possibly mediated by suppression of oxidative stress and inflammation.

Changes in intraocular pressure following narcosis with medetomidine, midazolam, and fentanyl in association with initial intraocular pressure in mice.

Eye Research

This article describes the development of decreased intraocular pressure (IOP) under general anesthesia with medetomidine, midazolam, and fentanyl in mice with normal and elevated IOP.

IOP was measured using the iCare Tonolab rebound tonometer. Twelve 3-4 months-old male and female C57BL/6J mice were randomized to a control group with physiological IOP and a high IOP group with experimentally induced ocular hypertension using tarsal injections of dexamethasone-21-acetate. For anesthesia, medetomidine and midazolam were used, subgroups additionally received fentanyl. IOP was measured every 2.5 minutes for 30 minutes.

Control group differed with 14.89 mmHg (SEM: 0.58) significantly (p = 0.0002) from the high IOP group with initial 20.44 mmHg (SEM: 0.75). All groups showed a significant (p < 0.05) decrease in IOP under general anesthesia. There was no significant difference in IOP development and decrease between the group additionally receiving fentanyl and the group without fentanyl. The decrease in IOP was highly dependent on the initial value, with the high IOP group showing a greater decrease. After 10 minutes, no significant difference in IOP could be detected between the high IOP and control group.

In mice, general anesthesia with medetomidine and midazolam leads to a declining IOP over time. Adding fentanyl to the anesthesia did not alter these effects. The decline is time-dependent and IOP-dependent.

A Review of Corneal Biomechanics and Scleral Stiffness in Topical Prostaglandin Analog Therapy for Glaucoma.

Eye Research

The mechanism of action underlying prostaglandin analog (PGA) therapy involves changes in the expression of different metalloproteases to increase permeability of the sclera and allow increased aqueous humor outflow through this alternative drainage pathway. This alteration of structure impacts cornea/scleral biomechanics and may introduce artifact into the measurement of intraocular pressure (IOP) in the clinical setting.

A literature search reviewing the impact of PGA therapy on corneal and scleral biomechanics was conducted including basic studies, clinical studies with treatment naïve patients, and a clinical study examining the cessation of PGA therapy. Additional literature including engineering texts was added for greater clarity of the concepts underlying ocular biomechanics.

One study with an animal model reported significant corneal stiffening with PGA treatment. Most longitudinal clinical studies examining the effects of initiation of PGA therapy in PGA naïve subjects failed to report biomechanical parameters associated with stiffness using the Corvis ST and only included those parameters strongly influenced by IOP. One study reported a significant reduction in scleral stiffness with IOP as a co-variate, highlighting the need to account for the effects of IOP lowering when assessing clinical biomechanics. The report of cessation of PGA therapy on corneal biomechanics showed no change in corneal compensated IOP after 6 weeks, raising the question of reversibility of the PGA-induced structural alteration.

Given that the findings in several clinical studies may merely reflect a reduction in IOP, further studies are warranted using Corvis ST parameters associated with corneal and scleral stiffness. The gold standard for IOP measurement in the clinical setting is Goldmann applanation tonometry, a technique previously shown to be affected by corneal stiffness. Since PGA therapy has been reported to alter not only scleral biomechanics, but also corneal biomechanics, it is essential to consider alternative tonometry technologies in the clinic.

Tear Film miRNAs and their Association with Human Dry Eye Disease.

Eye Research

miRNAs can regulate inflammatory pathways. The purpose of this work was to determine if inflammatory-related tear film miRNAs are associated with extracellular vesicles (EVs) in human non-Sjögren's Syndrome dry eye disease (DED) participants.

Five DED and 5 non-DED human participants were recruited. Tears samples were collected by washing the ocular surface of both eyes with phosphate buffered saline, pooling samples from the right and left eyes, and purifying EVs from the samples with a polyethylene glycol (PEG) 8000 precipitation procedure. Samples were directly analyzed via ELISA or transmission electron microscopy (TEM), or RNA was isolated first from the EVs and evaluated with RNA-Seq.

EVs were identified in the tear film of both groups using TEM and ELISA. Following EV purification and RNA isolation, RNA-Seq determined that there were 126 EV miRNAs differentially expressed between the two groups when comparing their RNA cargoes. Ingenuity Pathways Analysis found 9 upregulated miRNAs that were associated with inflammation (miR-127-5p, miR-1273h-3p, miR-1288-5p, miR-130b-5p, miR-139-3p, miR-1910-5p, miR-203b-5p, miR-22-5p, and miR-4632-3p; all p < 0.049; fold regulation range =1.43 to 1.67).

This study determined that EVs are present in the tear film and that tear EVs contain miRNAs that may be associated with DED inflammatory pathways.

Automated Measurement of Ocular Movements Using Deep Learning-Based Image Analysis.

Eye Research

Clinical assessment of ocular movements is essential for the diagnosis and management of ocular motility disorders. This study aimed to propose a deep learning-based image analysis to automatically measure ocular movements based on photographs and to investigate the relationship between ocular movements and age.

207 healthy volunteers (414 eyes) aged 5-60 years were enrolled in this study. Photographs were taken in the cardinal gaze positions. Ocular movements were manually measured based on a modified limbus test using ImageJ and automatically measured by our deep learning-based image analysis. Correlation analyses and Bland-Altman analyses were conducted to assess the agreement between manual and automated measurements. The relationship between ocular movements and age were analyzed using generalized estimating equations.

The intraclass correlation coefficients between manual and automated measurements of six extraocular muscles ranged from 0.802 to 0.848 (P < 0.001), and the bias ranged from -0.63 mm to 0.71 mm. The average measurements were 8.62 ± 1.07 mm for superior rectus, 7.77 ± 1.24 mm for inferior oblique, 6.99 ± 1.23 mm for lateral rectus, 6.71 ± 1.22 mm for medial rectus, 6.81 ± 1.20 mm for inferior rectus, and 6.63 ± 1.37 mm for superior oblique, respectively. Ocular movements in each cardinal gaze position were negatively related to age (P < 0.05).

The automated measurements of ocular movements using a deep learning-based approach were in excellent agreement with the manual measurements. This new approach allows objective assessment of ocular movements and shows great potential in the diagnosis and management of ocular motility disorders.

Protective Effects of Piceatannol against Selenite-Induced Cataract and Oxidative Damage in Rats.

Eye Research

This study aimed to investigate the protective effects of piceatannol (PIC) on selenite-induced cataracts in Sprague-Dawley rats and explore its therapeutic effects as an antioxidant.

Thirty-two eight-day-old rat pups were randomly divided into four groups, with eight pups in each of them. Group 1, as the control group, was injected with the same amount of saline, while Groups 2-4 were administered with sodium selenite (3.46 mg/kg) subcutaneously into the neck on postpartum day 10 for cataract induction. Without further treatment, Group 2 served as the control model, while Groups 3 and 4 (low- and high-dose PIC-treated) had intraperitoneal piceatannol from day 8 to day 17 at doses of 10 mg/kg and 20 mg/kg, respectively. On postpartum day 17, after the last injection, the rat pups were examined for cataract grade by slit lamp, and the lenses of every group were isolated for oxidative damage indicators and further analysis. SRA01/04 cells were exposed to 600 μM H2O2 for 24 hours with or without pretreatment with 10μМ piceatannol. Cell viability was tested by CCK-8 assay and cell apoptosis was evaluated by AnnexinV-PE/7AAD assay.

This study determined that compared with the model group, the degree of lens opacity was significantly reduced in PIC-treated groups. The histopathological damage of the lenses in the PIC-treated groups improved compared to the model group. There were fewer signs of lesions, such as vacuoles and atrophy. The biochemical results indicated that malondialdehyde (MDA) content of the PIC-treated groups were downregulated and the antioxidant enzyme activities (GSH and catalase) and antioxidant status (SOD) were upregulated compared with the model group. In vitro, piceatannol significantly restored cell viability and cell apoptosis under H2O2 injury.

Pretreatment with piceatannol may achieve a protective effect on cataract development through upregulating antioxidant enzyme activity.

Neuroanatomy of adult and aging chicken cornea.

Eye Research

To provide a complete nerve architecture and main sensory neuropeptide distribution in the chicken cornea.

Adult chickens aged 6 months and 4 years were used. The whole cornea was stained with protein gene product (PGP) 9.5 antibody-a pan marker for nerve fibers, calcitonin gene-related peptide (CGRP), and substance P (SP) antibodies; whole-mount images were acquired to build an entire view of corneal innervation. Relative corneal epithelial nerve fiber densities, including subbasal bundles and superficial terminals, were assessed by computer-assisted analysis.

An average of about 76.3 ± 5.7 (n = 8 corneas, 4M/4F) stromal nerve trunks enter the cornea radially and are evenly distributed around the limbus with no significant difference between male and female chickens. The subbasal nerve bundles do not extend in a given direction and, as a result, do not form a vortex in the center of the cornea. Furthermore, the chicken cornea contains more SP-positive nerves than CGRP-positive nerves. It is also shown that aging significantly reduces corneal epithelial nerve density in chickens.

This is the first study to provide a complete map of the entire corneal nerves and CGRP and SP sensory neuropeptide distribution in the adult chicken cornea. The findings show chicken corneal innervation has many differences to human and mammal cornea.

Graft Size and Double Scroll Formation Rate in Descemet Membrane Endothelial Keratoplasty.

Eye Research

This study aimed to evaluate the usefulness of intentional double scroll formation of donor Descemet membrane (DM) inside a glass tube inserter (the Fogla technique) in DM endothelial keratoplasty (DMEK) for controlled insertion and unfolding of grafts.

Eleven consecutive patients who underwent DMEK were included in this study. We sought to specify graft characteristics in which double scroll configuration was successfully formed using the Fogla technique. We compared donor age, graft size, surgical time, unfolding time, and visual outcomes between patients with and without double scroll configuration. The ability to form double scroll formation of DM grafts of various diameters and unfolding time of DM grafts was evaluated using total seven eye-bank eyes in ex vivo experiments.

A double scroll configuration inside a glass tube was successfully obtained in six DMEK grafts (54.5%). When comparing clinical features between those with and without double scroll configuration, only graft size was significantly larger in those with double scroll configuration (7.9 ± 0.2 mm) than in those without (7.4 ± 0.4, P = 0.03). There were no significant differences in other features and clinical outcomes, although unfolding-time was shorter in eyes with double scroll configuration (4.6 ± 2.0 min) compared to those without (8.6 ± 8.1, P = 0.21). Ex vivo experiments showed that unfolding time was significantly shorter in double scroll configuration (2.71 ± 0.49 min) than in single scroll (5.02 ± 0.79, P = 0.01).

A double scroll configuration within a glass tube can be obtained more frequently in larger DMEK grafts (8.0 mm in diameter), which may result in easier and faster DMEK procedures.

Lacrimal Gland and Orbital Lesions in LatY136F Knock-in Mice, a Model for Human IgG4-Related Ophthalmic Disease.

Eye Research

LatY136F knock-in mice were recently proposed as an animal model for immunoglobulin G4 (IgG4)-related disease. In this study, we investigated whether LatY136F knock-in mice exhibit ophthalmic lesions, specifically in the lacrimal and Harderian glands.

Lacrimal glands, Harderian glands, and adherent lymphoid follicle lesions were dissected from LatY136F knock-in mice and wild type (WT) C57BL/6 mice between 6 and 24 weeks of age. Tissues were stained with hematoxylin-eosin, immunoglobulin G (IgG), and anti-IgG1, a homologue of human IgG4, for histopathological analysis.

In LatY136F knock-in mice, IgG1-positive cells infiltrated the space between the lacrimal gland acinar cells at 6, 9, 12, and 20 weeks or order, and the number of IgG1-positive cells did not differ significantly between these age groups. Infiltration of IgG1-positive inflammatory cell was also observed in the Harderian glands of LatY136F knock-in mice at all ages. The ratio of IgG1/IgG-positive cells averaged 80 and 67% in the lacrimal and Harderian glands, respectively. Dense IgG1-positive lesions were also seen in tissues adjacent to the lacrimal and Harderian glands in some LatY136F knock-in mice. In contrast, there were almost no IgG1-positive cell infiltrates in the lacrimal and Harderian glands of WT mice.

IgG1-positive cells infiltrate the lacrimal and Harderian glands of LatY136F knock-in mice, indicating that LatY136F knock-in mice could be a representative animal model for IgG4-related ophthalmic disease.