The latest medical research on Neuro Oncology

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about neuro oncology gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Hypofractionated stereotactic re-irradiation for progressive glioblastoma: twelve years' experience of a single center.

Journal of Neuro-Oncology

We aimed to evaluate the prognostic factors and the role of stereotactic radiotherapy (SRT) as a re-irradiation technique in the management of progressive glioblastoma.

The records of 77 previously irradiated glioblastoma patients who progressed and received second course hypofractionated SRT (1-5 fractions) between 2009 and 2022 in our department were evaluated retrospectively. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for all statistical analyses.

The median time to progression from the end of initial radiotherapy was 14 months (range, 6-68 months). The most common SRT schedule was 30 Gy (range, 18-50 Gy) in 5 fractions (range, 1-5 fractions). The median follow-up after SRT was 9 months (range, 3-80 months). One-year overall (OS) and progression-free survival (PFS) rates after SRT were 46% and 35%, respectively. Re-irradiation dose and the presence of pseudoprogression were both significant independent positive prognostic factors for both OS (p = 0.009 and p = 0.04, respectively) and PFS (p = 0.008 and p = 0.04, respectively). For PFS, progression-free interval > 14 months was also a prognostic factor (p = 0.04). The treatment was well tolerated without significant acute toxicity. During follow-up, radiation necrosis was observed in 17 patients (22%), and 14 (82%) of them were asymptomatic.

Hypofractionated SRT is an effective treatment approach for patients with progressive glioblastoma. Younger patients who progressed later than 14 months, received higher SRT doses, and experienced pseudoprogression following SRT had improved survival rates.

Prognostic factors analysis of diffuse midline glioma.

Journal of Neuro-Oncology

This study retrospectively analyzes cases of diffuse midline glioma treated with radiotherapy, with the aim of investigating the prognosis of the tumor and its influencing factors.

From January 2018 to November 2022, we treated 64 patients who were pathologically diagnosed with diffuse midline glioma. Among them, 41 underwent surgical resection, and 23 underwent biopsy procedures. All patients received postoperative radiotherapy. We followed up with the patients to determine the overall survival rate and conducted univariate and multivariate analyses on relevant indicators.

The median survival time for the entire patient group was 33.3 months, with overall survival rates of 92.9%, 75.4%, and 45.0% at 1 year, 2 years, and 3 years, respectively. Univariate and multivariate analyses indicated that older patients had a better prognosis.

Patient age is an independent prognostic factor for patients with diffuse midline glioma undergoing radiation therapy.

Validation of a methylation-based signature for subventricular zone involvement in glioblastoma.

Journal of Neuro-Oncology

Glioblastomas (GBM) with subventricular zone (SVZ) contact have previously been associated with a specific epigenetic fingerprint. We aim to validate a reported bulk methylation signature to determine SVZ contact.

Methylation array analysis was performed on IDHwt GBM patients treated at our institution. The v11b4 classifier was used to ensure the inclusion of only receptor tyrosine kinase (RTK) I, II, and mesenchymal (MES) subtypes. Methylation-based assignment (SVZM ±) was performed using hierarchical cluster analysis. Magnetic resonance imaging (MRI) (T1ce) was independently reviewed for SVZ contact by three experienced readers.

Sixty-five of 70 samples were classified as RTK I, II, and MES. Full T1ce MRI-based rater consensus was observed in 54 cases, which were retained for further analysis. Epigenetic SVZM classification and SVZ were strongly associated (OR: 15.0, p = 0.003). Thirteen of fourteen differential CpGs were located in the previously described differentially methylated LRBA/MAB21L2 locus. SVZ + tumors were linked to shorter OS (hazard ratio (HR): 3.80, p = 0.02) than SVZM + at earlier time points (time-dependency of SVZM, p < 0.05). Considering the SVZ consensus as the ground truth, SVZM classification yields a sensitivity of 96.6%, specificity of 36.0%, positive predictive value (PPV) of 63.6%, and negative predictive value (NPV) of 90.0%.

Herein, we validated the specific epigenetic signature in GBM in the vicinity of the SVZ and highlighted the importance of methylation of a part of the LRBA/MAB21L2 gene locus. Whether SVZM can replace MRI-based SVZ assignment as a prognostic and diagnostic tool will require prospective studies of large, homogeneous cohorts.

Radio-pathomic maps of glioblastoma identify phenotypes of non-enhancing tumor infiltration associated with bevacizumab treatment response.

Journal of Neuro-Oncology

Autopsy-based radio-pathomic maps of glioma pathology have shown substantial promise inidentifying areas of non-enhancing tumor presence, which may be able to differentiate subsets of patients that respond favorably to treatments such as bevacizumab that have shown mixed efficacy evidence. We tested the hypthesis that phenotypes of non-enhancing tumor fronts can distinguish between glioblastoma patients that will respond favorably to bevacizumab and will visually capture treatment response.

T1, T1C, FLAIR, and ADC images were used to generate radio-pathomic maps of tumor characteristics for 79 pre-treatment patients with a primary GBM or high-grade IDH1-mutant astrocytoma for this study. Novel phenotyping (hypercellular, hypocellular, hybrid, or well-circumscribed front) of the non-enhancing tumor front was performed on each case. Kaplan Meier analyses were then used to assess differences in survival and bevacizumab efficacy between phenotypes. Phenotype compartment segmentations generated longitudinally for a subset of 26 patients over the course of bevacizumab treatment, where a mixed effect model was used to detect longitudinal changes.

Well-Circumscribed patients showed significant/trending increases in survival compared to Hypercellular Front (HR = 2.0, p = 0.05), Hypocellular Front (HR = 2.02, p = 0.03), and Hybrid Front tumors (HR = 1.75, p = 0.09). Only patients with hypocellular or hybrid fronts showed significant survival benefits from bevacizumab treatment (HR = 2.35, p = 0.02; and HR = 2.45, p = 0.03, respectively). Hypocellular volumes decreased by an average 50.52 mm3 per day of bevacizumab treatment (p = 0.002).

Patients with a hypocellular tumor front identified by radio-pathomic maps showed improved treatment efficacy when treated with bevacizumab, and reducing hypocellular volumes over the course of treatment may indicate treatment response.

Leptomeningeal carcinomatosis and brain metastases in gastroesophageal carcinoma: a real-world analysis of clinical and pathologic characteristics and outcomes.

Journal of Neuro-Oncology

Brain metastasis (BrM) and Leptomeningeal Carcinomatosis (LMC) are uncommon complications in gastroesophageal carcinoma (GEC) patients. These patients have a poor prognosis and are challenging to treat. We described the clinicopathologic features and outcomes in the largest cohort of Central Nervous System (CNS) metastasis in GEC patients.

single-center retrospective study of GEC treated from 2007 to 2021. Clinicopathologic characteristics and treatment modalities were reviewed. Survival was calculated from the date of CNS diagnosis until date of death/last follow-up using the Kaplan-Meier method. A multivariable Cox proportional hazards regression model was used.

Of 3283 GEC patients, 100 (3.04%) were diagnosed with BrM and 20 with LMC (0.61%). Patients with known human epidermal growth factor receptor 2 (HER2) status (N = 48), 60% were HER2 positive (defined as IHC 3 + or IHC 2+/FISH+). Among LMC patients most were signet-ring subtype (85%), and only 15% (2/13) were HER2 positive. Median survival was 0.7; 3.8; and 7.7 months in BrM patients treated with best supportive care, radiation, and surgery, respectively (p < 0.001). In LMC, median survival was 0.7 month in patients who had best supportive care (7/19) and 2.8 months for those who had whole brain radiation therapy (p = 0.015). Multivariate analysis showed worse outcomes in ECOG ≥ 2 (p = 0.002), number of BrM ≥ 4 (p < 0.001) and number of metastatic sites (p = 0.009).

HER2 expression were enriched in patients with BrM, while it is uncommon in LMC. Patients treated with surgery followed by radiation had an improved OS in BrM and WBRT benefited patients with LMC.

The risk and burden of thromboembolic and hemorrhagic events in patients with malignant gliomas receiving bevacizumab.

Journal of Neuro-Oncology

Bevacizumab has evolved as an integral treatment option for patients with high-grade gliomas. Little is known about clinical risk factors that predispose patients with high-grade gliomas receiving bevacizumab to VTE or ICH. We sought to characterize the clinical risk factors associated with risk of either event.

In this multi-institutional retrospective study, we first evaluated patients with high-grade gliomas who were treated with bevacizumab at University of Texas MD Anderson Cancer Center from 2015-2021. We compared clinical and treatment-related factors among three cohorts: those who developed VTE, ICH, or neither. We further compared survival outcomes of these patients from the time of bevacizumab initiation. Then to further confirm our results in a non-cancer center hospital setting we evaluated patients from two Ascension Seton Hospitals in Austin, Texas which are affiliated with Dell Medical School at the University of Texas at Austin from 2017-2022.

We found that the presence of cerebral macrobleeding, defined as a magnetic susceptibility of > 1 cm3 on magnetic resonance imaging, was highly associated with risk of developing ICH after initiation of bevacizumab. Development of ICH was significantly associated with poorer survival outcomes. We did not find a statistically significant effect of VTE on survival after bevacizumab initiation.

In order to stratify the risk for developing ICH before the initiation of bevacizumab, we recommend to assess for the presence of cerebral macrobleeding as it is associated with ICH development.

Imaging as an early biomarker to predict sensitivity to everolimus for progressive NF2-related vestibular schwannoma.

Journal of Neuro-Oncology

NF2-related schwannomatosis (NF2) is characterized by bilateral vestibular schwannomas (VS) often causing hearing and neurologic deficits, with currently no FDA-approved drug treatment. Pre-clinical studies highlighted the potential of mTORC1 inhibition in delaying schwannoma progression. We conducted a prospective open-label, phase II study of everolimus for progressive VS in NF2 patients and investigated imaging as a potential biomarker predicting effects on growth trajectory.

The trial enrolled 12 NF2 patients with progressive VS. Participants received oral everolimus daily for 52 weeks. Brain imaging was obtained quarterly. As primary endpoint, radiographic response (RR) was defined as ≥ 20% decrease in target VS volume. Secondary endpoints included other tumors RR, hearing outcomes, drug safety and quality of life (QOL).

Eight participants completed the trial and four discontinued the drug early due to significant volumetric VS progression. After 52 weeks of treatment, the median annual VS growth rate decreased from 77.2% at baseline to 29.4%. There was no VS RR and 3 of 8 (37.5%) participants had stable disease. Decreased or unchanged VS volume after 3 months of treatment was predictive of stabilization at 12 months. Seven of eight participants had stable hearing during treatment except one with a decline in word recognition score. Ten of twelve participants reported only minimal changes to their QOL scores.

Volumetric imaging at 3 months can serve as an early biomarker to predict long-term sensitivity to everolimus treatment. Everolimus may represent a safe treatment option to decrease the growth of NF2-related VS in patients who have stable hearing and neurological condition. TRN: NCT01345136 (April 29, 2011).

Ki-67 labeling index predicts tumor progression patterns and survival in patients with atypical meningiomas following stereotactic radiosurgery.

Journal of Neuro-Oncology

This study investigated whether Ki-67 labeling index (LI) correlated with clinical outcomes after SRS for atypical meningiomas.

This retrospective study examined 39 patients with atypical meningiomas who underwent SRS over a 10-year study period. Ki-67 LI was categorized into 3 groups: low (< 5%), intermediate (5%-10%), and high (> 10%). Local tumor control rates (LCRs), progression-free rates (PFRs), disease-specific survival (DSS) rates, and adverse radiation-induced events (AREs) were evaluated.

The median follow-up periods were 26 months. SRS was performed at a median prescription dose of 18 Gy for tumors with a median Ki-67 LI of 9.6%. The 3-year LCRs were 100%, 74%, and 25% in the low, intermediate, and high LI groups, respectively (p = 0.011). The 3-year PFRs were 100%, 40%, and 0% in the low, intermediate, and high LI groups (p = 0.003). The 5-year DSS rates were 100%, 89%, and 50% in the low, intermediate, and high LI groups (p = 0.019). Multivariable Cox proportional hazard analysis showed a significant correlation of high LI with lower LCR (hazard ratio [HR], 3.92; 95% confidence interval [CI] 1.18-13.04, p = 0.026), lower PFR (HR 3.80; 95% CI 1.46-9.88, p = 0.006), and shorter DSS (HR 6.55; 95% CI 1.19-35.95, p = 0.031) compared with intermediate LI. The ARE rates were minimal (8%) in the entire group.

Patients with high Ki-67 LI showed significantly more tumor progression and tumor-related death. Ki-67 LI might offer valuable predictive insights for the post-SRS management of atypical meningiomas.

Interim FDG-PET improves treatment failure prediction in primary central nervous system Lymphoma: a LOC network prospective multicentric study.

Neuro-Oncology

The purpose of our study was to assess the predictive and prognostic role of 2-18F-fluoro-2-deoxy-D-glucose (FDG) PET/MRI during high-dose methotrexate-based chemotherapy (HD-MBC) in de novo primary central nervous system lymphoma (PCNSL) patients aged 60 and above.

This prospective multicentric ancillary study included 65 immunocompetents patients who received induction HD-MBC as part of the BLOCAGE01 phase III trial. FDG-PET/MRI were acquired at baseline, post two cycles (PET/MRI2), and post-treatment (PET/MRI3). FDG-PET response was dichotomized, with "positive" indicating persistent tumor uptake higher than the contralateral mirroring brain region. Performances of FDG-PET and International PCNSL Collaborative Group criteria in predicting induction response, progression-free survival (PFS), and overall survival (OS) were compared.

Of 48 PET2 scans performed, nine were positive and aligned with a partial response (PR) on MRI2. Among these, eight (89%) progressed by the end of the induction phase. In contrast, 35/39 (90%) of PET2-negative patients achieved complete response (CR). Among the 18 discordant responses at interim (PETCR/MRIPR), 83% ultimately achieved CR. 87% of the PET2-negative patients were disease-free at 6 months versus 11% of the PET2-positive patients (p<0.001). The MRI2 response did not significantly differentiate patients based on their PFS, regardless of whether they were in CR or PR. Both PET2 and MRI2 independently predicted OS in multivariate analysis, with PET2 showing stronger association.

Our study highlights the potential of interim FDG-PET for early management of PCNSL patients. Response-driven treatment based on PET2 may guide future clinical trials.

Dual p38MAPK and MEK inhibition disrupts adaptive chemoresistance in mesenchymal glioblastoma to temozolomide.

Neuro-Oncology

Precision treatment of glioblastoma is increasingly focused on molecular subtyping, with the mesenchymal subtype particularly resistant to temozolomide. Here, we aim to develop a targeted therapy for temozolomide resensitization in the mesenchymal subtype.

We integrated kinomic profiles and kinase inhibitor screens from patient-derived proneural and mesenchymal glioma-propagating cells public clinical datasets to identify key protein kinases implicated in temozolomide resistance. RNAseq, apoptosis assays and comet assays were used to examine the role of p38MAPK signaling and adaptive chemoresistance in mesenchymal cells. The efficacy of dual p38MAPK and MEK/ERK inhibition using ralimetinib (selective orally active p38MAPK inhibitor; phase I/II for glioblastoma) and binimetinib (approved MEK1/2 inhibitor for melanoma; phase II for high-grade glioma) in primary and recurrent mesenchymal tumors was evaluated using an intracranial patient-derived tumor xenograft model, focusing on survival analysis.

Our transcriptomic-kinomic integrative analysis revealed p38MAPK as the prime target whose gene signature enables patient stratification based on their molecular subtypes and provides prognostic value. Repurposed p38MAPK inhibitors synergize favourably with temozolomide to promote intracellular retention of temozolomide and exacerbate DNA damage. Mesenchymal cells exhibit adaptive chemoresistance to p38MAPK inhibition through a pH-/calcium-mediated MEK/ERK pathway. Dual p38MAPK and MEK inhibition effectively maintains temozolomide sensitivity in primary and recurrent intracranial mesenchymal glioblastoma xenografts.

Temozolomide resistance in mesenchymal glioblastoma is associated with p38MAPK activation. Adaptive chemoresistance in p38MAPK-resistant cells is mediated by MEK/ERK signaling. Adjuvant therapy with dual p38MAPK and MEK inhibition prolongs temozolomide sensitivity, which can be developed into a precision therapy for the mesenchymal subtype.

Distinct uptake and elimination profiles for trastuzumab, human IgG and biocytin-TMR in experimental HER2+ brain metastases of breast cancer.

Neuro-Oncology

The aim of this study is an improved understanding of drug distribution in brain metastases. Rather than single point snapshots, we analyzed the time course and route of drug/probe elimination (clearance), focusing on the Intramural Periarterial Drainage (IPAD) pathway.

Mice with JIMT1-BR HER2+ experimental brain metastases were injected with biocytin-TMR and either trastuzumab or human IgG. Drugs/probes circulated for 5 min-48h, followed by perfusion. Brain sections were stained for human IgG, vascular basement membrane proteins laminin or collagen IV, and periarterial α-SMA. A machine learning algorithm was developed to identify metastases, metastatic microenvironment, and uninvolved brain in confocally scanned brain sections. Drug/probe intensity over time and total imaged drug exposure (iAUC) were calculated for 27,249 lesions and co-immunofluorescence with IPAD- vascular matrix analyzed in 11,668 metastases.

In metastases, peak trastuzumab levels were 5-fold higher than human IgG but 4-fold less than biocytin-TMR. The elimination phase constituted 85-93% of total iAUC for all drugs/probes tested. For trastuzumab, total iAUC during uptake was similar to the small molecule drug probe biocytin-TMR, but slower trastuzumab elimination resulted in a 1.7-fold higher total iAUC. During elimination trastuzumab and IgG were preferentially enriched in the α-SMA+ periarterial vascular matrix, consistent with the IPAD clearance route; biocytin-TMR showed heterogeneous elimination pathways.

Drug/probe elimination is an important component of drug development for brain metastases. We identified a prolonged elimination pathway for systemically administered antibodies through the periarterial vascular matrix that may contribute to the sustained presence and efficacy of large antibody therapeutics.

The development of a custom RNA-sequencing panel for the identification of predictive and diagnostic biomarkers in glioma.

Journal of Neuro-Oncology

Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA.

A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets.

Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis.

TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.