The latest medical research on Chinese Medical Practitioner

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about chinese medical practitioner gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Acupuncture improves the symptoms, serum ghrelin, and autonomic nervous system of patients with postprandial distress syndrome: a randomized controlled trial.

Chinese Medicine

The trial is registered with the ISRCTN registry, ISRCTN12511434. Registered 31 March 2017, https://www.isrctn.com/ .

This study aims to investigate the effects of acupuncture on symptoms, serum hormones, and ANS in PDS patients.

This randomized controlled clinical trial was conducted at Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University. Sixty-two PDS patients were randomly assigned equally to acupuncture or sham acupuncture arm (3 sessions per week for 4-week). The main outcome measures which were evaluated at baseline and 4-week included cardinal symptoms, serum hormones including ghrelin, vasoactive intestinal peptide (VIP), substance P (SP), and ANS.

Among the 62 randomly assigned participants, 51 (82%) were included in the baseline characteristics and outcome analysis. Gastrointestinal symptoms including response rate (p = 0.001) and dyspepsia symptom severity (p = 0.002) were significantly improved after acupuncture treatment. Serum ghrelin concentration was significantly higher in acupuncture group than in sham acupuncture group (8.34 ± 3.00 ng/ml versus 6.52 ± 2.00 ng/ml, p = 0.022) after 4-week treatment, instead of VIP and SP (p > 0.05). The acupuncture group had significantly higher vagal activity, showing with increasing of high-frequency component (HF, p ≤ 0.001) and decreasing of the ratio of low-frequency and HF (p ≤ 0.001). In relationship analysis, the HF component exhibited a significant inverse correlation with symptom severity (R = - 0.501, p ≤ 0.001), but not with ghrelin level (R = 0.026, p = 0.865).

Acupuncture may improve the symptoms and increase the ghrelin level of PDS patients, the therapeutic effect of acupuncture was associated with the alteration of vagal activity.

Metabolomics and proteomics analyses of Chrysanthemi Flos: a mechanism study of changes in proteins and metabolites by processing methods.

Chinese Medicine

Chrysanthemi Flos is a traditional Chinese medicine with a long history of medicinal use. Prior research suggests that the intrinsic composition of Chrysanthemi Flos is affected by shade-drying and oven-drying methods. Nevertheless, the effects of these methods on the proteins and metabolites of Chrysanthemi Flos have not been extensively studied.

The TMT (tandem mass tag) quantitative proteomics method and the LC-MS/MS (liquid chromatography-tandem mass spectrometry) non-targeted metabolomics method were used to systematically study the differences in the proteins and metabolites during the process of drying Chrysanthemi Flos in the shade and an oven.

Differentially accumulated metabolites and abundant proteins were primarily enriched in the purine metabolism, pyrimidine metabolism, cyanogenic amino acid metabolism, phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. Primary metabolites, such as guanine, xanthine, cytidine 5'-diphosphate serine, L-isoleucine, stearidonic acid, alginate, and inulin, play a crucial role in providing energy for Chrysanthemi Flos to withstand desiccation stress. The upregulation of ferulate-5- hydroxylase (F5H), shikimate O hydroxycinnamoyltransferase (HCT), caffeoyl-CoA O-methyltransferase (CCoAOMT), and chalcone isomerase (CHI) enzymes promotes the synthesis of flavonoids, including sinapic acid, caffeoyl shikimic acid, and naringenin chalcone, which possess antioxidant properties. Despite the notable improvements in energy metabolism and antioxidant capacity, these enhancements proved insufficient in halting the senescence and ultimate demise of Chrysanthemi Flos. Moreover, the shade-drying method can inhibit protein expression and promote the accumulation of bioactive components, but the drying efficiency is low, while the oven-drying method exhibits rapid drying efficiency, it does not effectively preserve the components.

Our study offers a comprehensive explanation for the changes in protein expression and metabolite conversion observed in shade-dried and oven-dried Chrysanthemi Flos, also providing a foundation for optimizing the drying process of Chrysanthemi Flos.

Therapeutic Potential of Traditional Chinese Medicine Against Osteoarthritis: Targeting the Wnt Signaling Pathway.

American Journal of

Osteoarthritis (OA) is a chronic degenerative articular disease that leads to physical disability and reduced quality of life. The key pathological...

Botany, Traditional Use, Phytochemistry, Pharmacology and Clinical Applications of Rhubarb (Rhei Radix et Rhizome): A Systematic Review.

American Journal of

Rhubarb, the Rhei radix et rhizoma (Da huang) is a member of the Polygonaceae family, included in the 2020 edition of the Chinese Pharmacopoeia, an...

Research Progress of Traditional Chinese Medicine in Treating Central Nervous System Diseases by Modulating Ferroptosis.

American Journal of

A newly proposed form of programmed cell death, ferroptosis, is distinct in cellular morphology, biochemical characteristics, and genetic character...

Natural Bioactive Compounds: Emerging Therapies for Hyperuricemia.

American Journal of

Hyperuricemia is a crucial feature of metabolic syndrome, characterized by elevated uric acid that causes urate crystal deposits in joints, kidneys...

Huanglian-Renshen-Decoction Maintains Islet β-Cell Identity in T2DM Mice through Regulating GLP-1 and GLP-1R in Both Islet and Intestine.

Chinese Journal of Cancer

To elucidate the effect of Huanglian-Renshen-Decoction (HRD) on ameliorating type 2 diabetes mellitus by maintaining islet β -cell identity through regulating paracrine and endocrine glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) in both islet and intestine.

The db/db mice were divided into the model (distilled water), low-dose HRD (LHRD, 3 g/kg), high-dose HRD (HHRD, 6 g/kg), and liraglutide (400 µ g/kg) groups using a random number table, 8 mice in each group. The db/m mice were used as the control group (n=8, distilled water). The entire treatment of mice lasted for 6 weeks. Blood insulin, glucose, and GLP-1 levels were quantified using enzyme-linked immunosorbent assay kits. The proliferation and apoptosis factors of islet cells were determined by immunohistochemistry (IHC) and immunofluorescence (IF) staining. Then, GLP-1, GLP-1R, prohormone convertase 1/3 (PC1/3), PC2, v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA), and pancreatic and duodenal homeobox 1 (PDX1) were detected by Western blot, IHC, IF, and real-time quantitative polymerase chain reaction, respectively.

HRD reduced the weight and blood glucose of the db/db mice, and improved insulin sensitivity at the same time (P<0.05 or P<0.01). HRD also promoted mice to secrete more insulin and less glucagon (P<0.05 or P<0.01). Moreover, it also increased the number of islet β cell and decreased islet α cell mass (P<0.01). After HRD treatment, the levels of GLP-1, GLP-1R, PC1/3, PC2, MafA, and PDX1 in the pancreas and intestine significantly increased (P<0.05 or P<0.01).

HRD can maintain the normal function and identity of islet β cell, and the underlying mechanism is related to promoting the paracrine and endocrine activation of GLP-1 in pancreas and intestine.

Bioactive Phytophenolics of Vitex negundo Reveal Therapeutic Antifungal Potentials against Candida albicans.

Chinese Journal of Cancer

To map the potent antifungal properties of the medicinal plant Vitex negundo, in vitro and in silico studies were performed to decipher the pharmacokinetics and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of their phytoconstituents.

With the PASS (Prediction of Activity Spectra for Substances) prediction tool, many parameters of V. negundo phenolics were examined, including drug-likeness, bioavailability, antifungal activity, and anti-biofilm activity. Moreover, ADMET parameters were also determined.

Eighteen phenolic compounds from V. negundo with significant antifungal activity against Candida species (human fungal pathogens) were detected. The antioxidant activity, inhibition percentage, and minimum inhibitory concentration value of V. negundo phenolic extracts indicate it as an effective antifungal agent for the treatment of candidiasis caused by the fungal pathogen Candida albicans. Many phenolic compounds showed a significantly high efficiency against Candida's planktonic cells and biofilm condition.

The phenolics fraction of V. negundo has potent antifungal activities, however, some more pre-clinical studies are a matter of future research to further investigate V. negundo phenolic compound as a potential new antifungal arsenal.

Efficacy and Safety of Yangxue Qingnao Pills Combined with Amlodipine in Treatment of Hypertensive Patients with Blood Deficiency and Gan-Yang Hyperactivity: A Multicenter, Randomized Controlled Trial.

Chinese Journal of Cancer

To evaluate the clinical efficacy and safety of Yangxue Qingnao Pills (YXQNP) combined with amlodipine in treating patients with grade 1 hypertension.

This is a multicenter, randomized, double-blind, and placebo-controlled study. Adult patients with grade 1 hypertension of blood deficiency and Gan (Liver)-yang hyperactivity syndrome were randomly divided into the treatment or the control groups at a 1:1 ratio. The treatment group received YXQNP and amlodipine besylate, while the control group received YXQNP's placebo and amlodipine besylate. The treatment duration lasted for 180 days. Outcomes assessed included changes in blood pressure, Chinese medicine (CM) syndrome scores, symptoms and target organ functions before and after treatment in both groups. Additionally, adverse events, such as nausea, vomiting, rash, itching, and diarrhea, were recorded in both groups.

A total of 662 subjects were enrolled, of whom 608 (91.8%) completed the trial (306 in the treatment and 302 in the control groups). After 180 days of treatment, the standard deviations and coefficients of variation of systolic and diastolic blood pressure levels were lower in the treatment group compared with the control group. The improvement rates of dizziness, headache, insomnia, and waist soreness were significantly higher in the treatment group compared with the control group (P<0.05). After 30 days of treatment, the overall therapeutic effects on CM clinical syndromes were significantly increased in the treatment group as compared with the control group (P<0.05). After 180 days of treatment, brachial-ankle pulse wave velocity, ankle brachial index and albumin-to-creatinine ratio were improved in both groups, with no statistically significant differences (P>0.05). No serious treatment-related adverse events occurred during the study period.

Combination therapy of YXQNP with amlodipine significantly improved symptoms such as dizziness and headache, reduced blood pressure variability, and showed a trend toward lowering urinary microalbumin in hypertensive patients. These findings suggest that this regimen has good clinical efficacy and safety. (Registration No. ChiCTR1900022470).

Taraxerone inhibits M1 polarization and alleviates sepsis-induced acute lung injury by activating SIRT1.

Chinese Medicine

Acute lung injury (ALI) is the most lethal disease associated with sepsis, and there is a lack of effective drug treatment. As the major cells of sepsis-induced ALI, macrophages polarize toward the proinflammatory M1 phenotype and secrete multiple inflammatory cytokines to accelerate the disease process through nuclear factor kappa-B (NF-κB) and NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathways. Taraxerone, the main component of the Chinese medicinal Sedum, possesses numerous biological activities. However, uncertainty remains regarding the potential of taraxerone to protect against sepsis-induced ALI. This study aimed to investigate the effects and mechanisms of taraxerone against ALI.

An animal model for ALI was established by cecal ligation and puncture and treated with taraxerone via intraperitoneal administration. The protective effect of taraxerone on the lungs was analyzed using H&E staining, dihydroethidium staining, ELISA kits, cell counting, myeloperoxidase kit, malondialdehyde kit, glutathione kit, superoxide dismutase kit and flow cytometry. Western blotting, RT-PCR, flow cytometry, co-immunoprecipitation, and immunofluorescence were used to investigate the regulatory of taraxerone on SIRT1.

Our study demonstrates for the first time that taraxerone can activate SIRT1 in macrophages, promoting SIRT1 activity. This activation inhibited the NF-κB signaling pathway primarily through the dephosphorylation and deacetylation of p65. Simultaneously, taraxerone disrupted the NLRP3 inflammasome signaling pathway, thereby alleviating M1 polarization of macrophages and mitigating sepsis-induced pulmonary inflammation and oxidative stress. In vivo, EX527 was used to validate the anti-inflammatory and anti-oxidative stress effects of taraxerone mediated by SIRT1.

SIRT1-mediated anti-inflammatory and anti-oxidative stress effects may be important targets for taraxerone in treating ALI.

An integrated approach for studying exposure, metabolism, and disposition of traditional Chinese medicine using PATBS and MDRB tools: a case study of semen Armeniacae Amarum.

Chinese Medicine

Deciphering the in vivo processes of traditional Chinese medicine (TCM) is crucial for identifying new pharmacodynamic substances and new drugs. Due to the complexity and diversity of components, investigating the exposure, metabolism, and disposition remains a major challenge in TCM research. In recent years, a number of non-targeted smart mass-spectrometry (MS) techniques, such as precise-and-thorough background-subtraction (PATBS) and metabolomics, have realized the intelligent identification of in vivo components of TCM. However, the metabolites characterization still largely relies on manual identification in combination with online databases.

We developed a scoring approach based on the structural similarity and minimal mass defect variations between metabolites and prototypes. The current method integrates three dimensions of mass spectral data including m/z, mass defect of MS1 and MS2, and the similarity of MS2 fragments, which was sequentially analyzed by a R-based mass dataset relevance bridging (MDRB) data post-processing technique. The MDRB technology constructed a component relationship network for TCM, significantly improving metabolite identification efficiency and facilitating the mapping of translational metabolic pathways. By combining MDRB with PATBS through this non-targeted identification technology, we developed a comprehensive strategy for identification, characterization and bridging analysis of TCM metabolite in vivo. As a proof of concept, we adopted the proposed strategy to investigate the process of exposure, metabolism, and disposition of Semen Armeniacae Amarum (CKXR) in mice.

The currently proposed analytical approach is universally applicable and demonstrates its effectiveness in analyzing complex components of TCMs in vitro and in vivo. Furthermore, it enables the correlation of in vitro and in vivo data, providing insights into the metabolic transformations among components sharing the same parent nucleus structure. Finally, the developed MDRB platform is publicly available for ( https://github.com/933ZhangDD/MDRB ) for accelerating TCM research for the scientific community.

Periplaneta americana L. extract exerts neuroprotective effects by inhibiting endoplasmic reticulum stress via AKT-dependent pathway in experimental models of Parkinson's disease.

Chinese Medicine

Parkinson's disease (PD) is a chronic neurodegenerative disorder that currently has no curable strategies. More and more evidence suggests that endoplasmic reticulum (ER) stress plays an essential role in PD pathogenesis. Periplaneta americana L. (P. americana) is a traditional Chinese medicine with diverse therapeutic properties. This study aims to investigate the neuroprotective effect and underlying mechanism of P. americana in in vitro and in vivo PD models.

The exposure of SH-SY5Y cells to 1-methyl-4-phenyl-pyridinium (MPP+) was used as the in vitro PD model. MTT assay, Hoechst staining, Calcein AM-PI staining and flow cytometry were performed to measure the cell viability and apoptosis. DCFH-DA and JC-1 assay were used to measure the intracellular ROS and mitochondrial membrane potential (Δψm), respectively. Western-blot and immunostaining were conducted to detect the expression of key molecules related with ER stress. For the in vivo PD model induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydro-pyridine (MPTP), the motor function of mice was assessed by behavioral tests, the level of TH was examined by western-blot and immunostaining, the expression of key molecules related with ER stress was measured by western-blot.

Periplaneta americana ethanol extract (PAE) concentration-dependently inhibited MPP+-induced cell loss and increased cell viability. PAE also remarkably attenuated ROS accumulation, the decline of Δψm as well as the excessive ER stress. The neuroprotective effects of PAE could be blocked by ROS inducer trimethylamine N-Oxide or ER stress activator tunicaymycin, while the antioxidant N-Acetyl-L-cysteine or ER stress inhibitor sodium 4-phenylbutyrate mimicked the effects of PAE. Furthermore, we found that PAE could activate AKT/GSK3β/β-catenin pathway. The effect of PAE on ROS production, Δψm and ER stress was blocked by AKT inhibitor MK-2206. In in vivo model, PAE significantly improved motor function, prevented dopaminergic neuronal loss and attenuated ER stress in substantia nigra and striatum of MPTP-treated mice. Similarly, the effects of PAE on MPTP-treated mice were also abolished by MK-2206.

Our results suggest that P. americana exerts neuroprotective effects through inhibiting ER stress via AKT-dependent pathway. Periplaneta americana may represent a promising therapeutic agent for PD treatment and is worthy of further being exploited.