The latest medical research on Geriatric Medicine

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about geriatric medicine gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

[Not Available].

Alzheimers Dement (N

New therapies to prevent or delay the onset of symptoms, slow progression, or improve cognitive and behavioral symptoms of Alzheimer's disease (AD) are needed.

We interrogated clinicaltrials.gov including all clinical trials assessing pharmaceutical therapies for AD active in on January 1, 2024. We used the Common Alzheimer's Disease Research Ontology (CADRO) to classify the targets of therapies in the pipeline.

There are 164 trials assessing 127 drugs across the 2024 AD pipeline. There were 48 trials in Phase 3 testing 32 drugs, 90 trials in Phase 2 assessing 81 drugs, and 26 trials in Phase 1 testing 25 agents. Of the 164 trials, 34% (N = 56) assess disease-modifying biological agents, 41% (N = 68) test disease-modifying small molecule drugs, 10% (N = 17) evaluate cognitive enhancing agents, and 14% (N = 23) test drugs for the treatment of neuropsychiatric symptoms.

Compared to the 2023 pipeline, there are fewer trials (164 vs. 187), fewer drugs (127 vs. 141), fewer new chemical entities (88 vs. 101), and a similar number of repurposed agents (39 vs. 40).

In the 2024 Alzheimer's disease drug development pipeline, there are 164 clinical trials assessing 127 drugs.The 2024 Alzheimer's disease drug development pipeline has contracted compared to the 2023 Alzheimer pipeline with fewer trials, fewer drugs, and fewer new chemical entities.Drugs in the Alzheimer's disease drug development pipeline target a wide array of targets; the most common processes targeted include neurotransmitter receptors, inflammation, amyloid, and synaptic plasticity.The total development time for a potential Alzheimer's disease therapy to progress from nonclinical studies to FDA review is approximately 13 years.

Sequential CD7 CAR T-Cell Therapy and Allogeneic HSCT without GVHD Prophylaxis.

N Engl J

Patients with relapsed or refractory hematologic cancers have a poor prognosis. Chimeric antigen receptor (CAR) T-cell therapy as a bridge to allogeneic hematopoietic stem-cell transplantation (HSCT) has the potential for long-term tumor elimination. However, pre-HSCT myeloablation and graft-versus-host disease (GVHD) prophylaxis agents have toxic effects and could eradicate residual CAR T cells and compromise antitumor effects. Whether the integration of CAR T-cell therapy and allogeneic HSCT can preserve CAR T-cell function and improve tumor control is unclear.

We tested a novel "all-in-one" strategy consisting of sequential CD7 CAR T-cell therapy and haploidentical HSCT in 10 patients with relapsed or refractory CD7-positive leukemia or lymphoma. After CAR T-cell therapy led to complete remission with incomplete hematologic recovery, patients received haploidentical HSCT without pharmacologic myeloablation or GVHD prophylaxis drugs. Toxic effects and efficacy were closely monitored.

After CAR T-cell therapy, all 10 patients had complete remission with incomplete hematologic recovery and grade 4 pancytopenia. After haploidentical HSCT, 1 patient died on day 13 of septic shock and encephalitis, 8 patients had full donor chimerism, and 1 patient had autologous hematopoiesis. Three patients had grade 2 HSCT-associated acute GVHD. The median follow-up was 15.1 months (range, 3.1 to 24.0) after CAR T-cell therapy. Six patients remained in minimal residual disease-negative complete remission, 2 had a relapse of CD7-negative leukemia, and 1 died of septic shock at 3.7 months. The estimated 1-year overall survival was 68% (95% confidence interval [CI], 43 to 100), and the estimated 1-year disease-free survival was 54% (95% CI, 29 to 100).

Our findings suggest that sequential CD7 CAR T-cell therapy and haploidentical HSCT is safe and effective, with remission and serious but reversible adverse events. This strategy offers a feasible approach for patients with CD7-positive tumors who are ineligible for conventional allogeneic HSCT. (Funded by the National Natural Science Foundation of China and the Key Project of Science and Technology Department of Zhejiang Province; ClinicalTrials.gov numbers, NCT04599556 and NCT04538599.).

Nutritional Support for Moderate-to-Late-Preterm Infants - A Randomized Trial.

N Engl J

Most moderate-to-late-preterm infants need nutritional support until they are feeding exclusively on their mother's breast milk. Evidence to guide nutrition strategies for these infants is lacking.

We conducted a multicenter, factorial, randomized trial involving infants born at 32 weeks 0 days' to 35 weeks 6 days' gestation who had intravenous access and whose mothers intended to breast-feed. Each infant was assigned to three interventions or their comparators: intravenous amino acid solution (parenteral nutrition) or dextrose solution until full feeding with milk was established; milk supplement given when maternal milk was insufficient or mother's breast milk exclusively with no supplementation; and taste and smell exposure before gastric-tube feeding or no taste and smell exposure. The primary outcome for the parenteral nutrition and the milk supplement interventions was the body-fat percentage at 4 months of corrected gestational age, and the primary outcome for the taste and smell intervention was the time to full enteral feeding (150 ml per kilogram of body weight per day or exclusive breast-feeding).

A total of 532 infants (291 boys [55%]) were included in the trial. The mean (±SD) body-fat percentage at 4 months was similar among the infants who received parenteral nutrition and those who received dextrose solution (26.0±5.4% vs. 26.2±5.2%; adjusted mean difference, -0.20; 95% confidence interval [CI], -1.32 to 0.92; P = 0.72) and among the infants who received milk supplement and those who received mother's breast milk exclusively (26.3±5.3% vs. 25.8±5.4%; adjusted mean difference, 0.65; 95% CI, -0.45 to 1.74; P = 0.25). The time to full enteral feeding was similar among the infants who were exposed to taste and smell and those who were not (5.8±1.5 vs. 5.7±1.9 days; P = 0.59). Secondary outcomes were similar across interventions. Serious adverse events occurred in one infant.

This trial of routine nutrition interventions to support moderate-to-late-preterm infants until full nutrition with mother's breast milk was possible did not show any effects on the time to full enteral feeding or on body composition at 4 months of corrected gestational age. (Funded by the Health Research Council of New Zealand and others; DIAMOND Australian New Zealand Clinical Trials Registry number, ACTRN12616001199404.).

Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia.

N Engl J

Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs).

We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent β-thalassemia and a β0/β0, β0/β0-like, or non-β0/β0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed.

A total of 52 patients with transfusion-dependent β-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred.

Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent β-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).

Characterizing cognitive profiles in diverse middle-aged and older Hispanics/Latinos: Study of Latinos-Investigation of Neurocognitive Aging (HCHS/SOL).

Alzheimers Dementia Amsterdam

We investigated cognitive profiles among diverse, middle-aged and older Hispanic/Latino adults in the Study of Latinos-Investigation of Neurocognitive Aging (SOL-INCA) cohort using a cross-sectional observational study design.

Based on weighted descriptive statistics, the average baseline age of the target population was 56.4 years, slightly more than half were women (54.6%), and 38.4% reported less than a high school education. We used latent profile analysis of demographically adjusted z scores on SOL-INCA neurocognitive tests spanning domains of verbal memory, language, processing speed, and executive function.

Statistical fit assessment indices combined with clinical interpretation suggested five profiles: (1) a Higher Global group performing in the average-to-high-average range across all cognitive and instrumental activity of daily living (IADL) tests (13.8%); (2) a Higher Memory group with relatively high performance on memory tests but average performance across all other cognitive/IADL tests (24.6%); (3) a Lower Memory group with relatively low performance on memory tests but average performance across all other cognitive/IADL tests (32.8%); (4) a Lower Executive Function group with relatively low performance on executive function and processing speed tests but average-to-low-average performance across all other cognitive/IADL tests (16.6%); and (5) a Lower Global group performing low-average-to-mildly impaired across all cognitive/IADL tests (12.1%).

Our results provide evidence of heterogeneity in the cognitive profiles of a representative, community-dwelling sample of diverse Hispanic/Latino adults. Our analyses yielded cognitive profiles that may assist efforts to better understand the early cognitive changes that may portend Alzheimer's disease and related dementias among diverse Hispanics/Latinos.

The present study characterized cognitive profiles among diverse middle-aged and older Hispanic/Latino adults.Latent profile analysis of neurocognitive test scores was the primary analysis conducted.The target population consists of middle-aged and older Hispanic/Latino adults enrolled in the Hispanic Community Health Study/Study of Latinos and ancillary Study of Latinos - Investigation of Neurocognitive Aging.

Alteration of medial temporal lobe metabolism related to Alzheimer's disease and dementia with lewy bodies.

Journal Alzheimers Research Therapy

Association of medial temporal lobe (MTL) metabolism with Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) has not been evaluated considering their mixed disease (MD).

131 patients with AD, 133 with DLB, 122 with MD, and 28 normal controls (NCs) underwent neuropsychological tests, assessments for parkinsonism, cognitive fluctuation (CF), and visual hallucinations (VH), and 18F-fluorodeoxyglucose PET to quantify MTL metabolism in the amygdala, hippocampus, and entorhinal cortex. The effects of AD and DLB on MTL metabolism were evaluated using general linear models (GLMs). Associations between MTL metabolism, cognition, and clinical features were evaluated using GLMs or logistic regression models separately performed for the AD spectrum (NC + AD + MD), DLB spectrum (NC + DLB + MD), and disease groups (AD + DLB + MD). Covariates included age, sex, and education.

AD was associated with hippocampal/entorhinal hypometabolism, whereas DLB was associated with relative amygdalar/hippocampal hypermetabolism. Relative MTL hypermetabolism was associated with lower attention/visuospatial/executive scores and severe parkinsonism in both the AD and DLB spectra and disease groups. Left hippocampal/entorhinal hypometabolism was associated with lower verbal memory scores, whereas right hippocampal hypometabolism was associated with lower visual memory scores in both the AD spectrum and disease groups. Relative MTL hypermetabolism was associated with an increased risk of CF and VH in the disease group, and relative amygdalar hypermetabolism was associated with an increased risk of VH in the DLB spectrum.

Entorhinal-hippocampal hypometabolism and relative amygdala-hippocampal hypermetabolism could be characteristics of AD- and DLB-related neurodegeneration, respectively.

Serum and cerebrospinal fluid neurofilament light chain and glial fibrillary acid protein levels in early and advanced stages of cerebral amyloid Angiopathy.

Journal Alzheimers Research Therapy

Neurofilament light chain (NFL) is a biomarker for neuroaxonal damage and glial fibrillary acidic protein (GFAP) for reactive astrocytosis. Both processes occur in cerebral amyloid angiopathy (CAA), but studies investigating the potential of NFL and GFAP as markers for CAA are lacking. We aimed to investigate NFL and GFAP as biomarkers for neuroaxonal damage and astrocytosis in CAA.

For this cross-sectional study serum and cerebrospinal fluid (CSF) samples were collected between 2010 and 2020 from controls, (pre)symptomatic Dutch-type hereditary (D-CAA) mutation-carriers and participants with sporadic CAA (sCAA) from two prospective CAA studies at two University hospitals in the Netherlands. NFL and GFAP levels were measured with Simoa-assays. The association between NFL and GFAP levels and age, cognitive performance (MoCA), CAA-related MRI markers (CAA-CSVD-burden) and Aβ40 and Aβ42 levels in CSF were assessed with linear regression adjusted for confounders. The control group was divided in age < 55 and ≥55 years to match the specific groups.

We included 187 participants: 28 presymptomatic D-CAA mutation-carriers (mean age 40 years), 29 symptomatic D-CAA participants (mean age 58 years), 59 sCAA participants (mean age 72 years), 33 controls < 55 years (mean age 42 years) and 38 controls ≥ 55 years (mean age 65 years). In presymptomatic D-CAA, only GFAP in CSF (7.7*103pg/mL vs. 4.4*103pg/mL in controls; P<.001) was increased compared to controls. In symptomatic D-CAA, both serum (NFL:26.2pg/mL vs. 12.5pg/mL; P=0.008, GFAP:130.8pg/mL vs. 123.4pg/mL; P=0.027) and CSF (NFL:16.8*102pg/mL vs. 7.8*102pg/mL; P=0.01 and GFAP:11.4*103pg/mL vs. 7.5*103pg/mL; P<.001) levels were higher than in controls and serum levels (NFL:26.2pg/mL vs. 6.7pg/mL; P=0.05 and GFAP:130.8pg/mL vs. 66.0pg/mL; P=0.004) were higher than in pre-symptomatic D-CAA. In sCAA, only NFL levels were increased compared to controls in both serum (25.6pg/mL vs. 12.5pg/mL; P=0.005) and CSF (20.0*102pg/mL vs 7.8*102pg/mL; P=0.008). All levels correlated with age. Serum NFL correlated with MoCA (P=0.008) and CAA-CSVD score (P<.001). NFL and GFAP in CSF correlated with Aβ42 levels (P=0.01/0.02).

GFAP level in CSF is an early biomarker for CAA and is increased years before symptom onset. NFL and GFAP levels in serum and CSF are biomarkers for advanced CAA.

Exploring morphological similarity and randomness in Alzheimer's disease using adjacent grey matter voxel-based structural analysis.

Journal Alzheimers Research Therapy

Alzheimer's disease is characterized by large-scale structural changes in a specific pattern. Recent studies developed morphological similarity networks constructed by brain regions similar in structural features to represent brain structural organization. However, few studies have used local morphological properties to explore inter-regional structural similarity in Alzheimer's disease.

Here, we sourced T1-weighted MRI images of 342 cognitively normal participants and 276 individuals with Alzheimer's disease from the Alzheimer's Disease Neuroimaging Initiative database. The relationships of grey matter intensity between adjacent voxels were defined and converted to the structural pattern indices. We conducted the information-based similarity method to evaluate the structural similarity of structural pattern organization between brain regions. Besides, we examined the structural randomness on brain regions. Finally, the relationship between the structural randomness and cognitive performance of individuals with Alzheimer's disease was assessed by stepwise regression.

Compared to cognitively normal participants, individuals with Alzheimer's disease showed significant structural pattern changes in the bilateral posterior cingulate gyrus, hippocampus, and olfactory cortex. Additionally, individuals with Alzheimer's disease showed that the bilateral insula had decreased inter-regional structural similarity with frontal regions, while the bilateral hippocampus had increased inter-regional structural similarity with temporal and subcortical regions. For the structural randomness, we found significant decreases in the temporal and subcortical areas and significant increases in the occipital and frontal regions. The regression analysis showed that the structural randomness of five brain regions was correlated with the Mini-Mental State Examination scores of individuals with Alzheimer's disease.

Our study suggested that individuals with Alzheimer's disease alter micro-structural patterns and morphological similarity with the insula and hippocampus. Structural randomness of individuals with Alzheimer's disease changed in temporal, frontal, and occipital brain regions. Morphological similarity and randomness provide valuable insight into brain structural organization in Alzheimer's disease.

Longitudinal validation of cognitive reserve proxy measures: a cohort study in a rural Chinese community.

Journal Alzheimers Research Therapy

While evidence supports cognitive reserve (CR) in preserving cognitive function, longitudinal validation of CR proxies, including later-life factors, remains scarce. This study aims to validate CR's stability over time and its relation to cognitive function in rural Chinese older adults.

Within the project on the health status of rural older adults (HSRO), the survey included baseline assessment (2019) and follow-up assessment (2022). 792 older adults (mean age: 70.23 years) were followed up. The confirmatory factor analysis (CFA) was constructed using cognitive reserve proxies that included years of formal education, social support, hobbies, and exercise. We examined the longitudinal validity of the CR factor using confirmatory factor analyses and measurement invariance and explored the association of CR with cognition using Spearman's correlation and Generalized Estimating Equations (GEE).

The results showed that CR's CFA structure was stable over time (T0, χ2/df: 3.21/2; RMSEA: 0.02, and T1, χ2/df: 7.47/2; RMSEA: 0.05) and that it accepted both configural and metric invariance (Δχ2/df = 2.28/3, P = 0.52). In addition, it was found that CR had a stable positive relationship with cognitive function across time (T0, r = 0.54; T1, r = 0.49). Furthermore, longitudinal CR were associated with MMSE (β = 2.25; 95%CI = 2.01 ~ 2.49).

This study provided valuable evidence on the stability and validity of cognitive reserve proxy measures in rural Chinese older adults. Our findings suggested that cognitive reserve is associated with cognitive function over time and highlighted the importance of accumulating cognitive reserve in later life.

"I'm not a risk taker": Risk Perceptions of Nursing Home Residents With Dementia.

Alzheimer Disease and Associated Disorders

Persons living with Alzheimer's disease and related dementia (ADRD) in nursing homes (NH) are often excluded from conversations about their health/safety. These omissions impinge on personhood and the rights to have care preferences heard and honored. While persons with ADRD maintain the ability to communicate their preferences long after their decision-making abilities are affected, little is known about how persons with ADRD understand the risks associated with their preferences.

As part of a larger focused ethnography, in-depth interviews and an adapted risk propensity questionnaire explored the risk perceptions of NH residents with ADRD (N=7) associated with their preferences for care and activities of daily living.

Residents generally self-identified as risk avoiders (M=3.2±1.84) on the risk propensity scale and were able to rate risk associated with preferences described within 5 thematic categories: 1) participation in decision-making, 2) risk awareness, 3) paying attention to safety, 4) reliance on nursing home staff and family, and 5) impacts on quality of life and quality of care.

Results suggest NH residents with ADRD can express risk surrounding their preferences and should be encouraged to participate in discussions about their health and safety.

Genetic and multi-omic risk assessment of Alzheimer's disease implicates core associated biological domains.

Alzheimers Dement (N

Alzheimer's disease (AD) is the predominant dementia globally, with heterogeneous presentation and penetrance of clinical symptoms, variable presence of mixed pathologies, potential disease subtypes, and numerous associated endophenotypes. Beyond the difficulty of designing treatments that address the core pathological characteristics of the disease, therapeutic development is challenged by the uncertainty of which endophenotypic areas and specific targets implicated by those endophenotypes to prioritize for further translational research. However, publicly funded consortia driving large-scale open science efforts have produced multiple omic analyses that address both disease risk relevance and biological process involvement of genes across the genome.

Here we report the development of an informatic pipeline that draws from genetic association studies, predicted variant impact, and linkage with dementia associated phenotypes to create a genetic risk score. This is paired with a multi-omic risk score utilizing extensive sets of both transcriptomic and proteomic studies to identify system-level changes in expression associated with AD. These two elements combined constitute our target risk score that ranks AD risk genome-wide. The ranked genes are organized into endophenotypic space through the development of 19 biological domains associated with AD in the described genetics and genomics studies and accompanying literature. The biological domains are constructed from exhaustive Gene Ontology (GO) term compilations, allowing automated assignment of genes into objectively defined disease-associated biology. This rank-and-organize approach, performed genome-wide, allows the characterization of aggregations of AD risk across biological domains.

The top AD-risk-associated biological domains are Synapse, Immune Response, Lipid Metabolism, Mitochondrial Metabolism, Structural Stabilization, and Proteostasis, with slightly lower levels of risk enrichment present within the other 13 biological domains.

This provides an objective methodology to localize risk within specific biological endophenotypes and drill down into the most significantly associated sets of GO terms and annotated genes for potential therapeutic targets.

Suboptimal self-reported sleep efficiency and duration are associated with faster accumulation of brain amyloid beta in cognitively unimpaired older adults.

Alzheimers Dementia Amsterdam

This study investigated whether self-reported sleep quality is associated with brain amyloid beta (Aβ) accumulation.

Linear mixed effect model analyses were conducted for 189 cognitively unimpaired (CU) older adults (mean ± standard deviation 74.0 ± 6.2; 53.2% female), with baseline self-reported sleep data, and positron emission tomography-determined brain Aβ measured over a minimum of three time points (range 33.3-72.7 months). Analyses included random slopes and intercepts, interaction for apolipoprotein E (APOE) ε4 allele status, and time, adjusting for sex and baseline age.

Sleep duration <6 hours, in APOE ε4 carriers, and sleep efficiency <65%, in the whole sample and APOE ε4 non-carriers, is associated with faster accumulation of brain Aβ.

These findings suggest a role for self-reported suboptimal sleep efficiency and duration in the accumulation of Alzheimer's disease (AD) neuropathology in CU individuals. Additionally, poor sleep efficiency represents a potential route via which individuals at lower genetic risk may progress to preclinical AD.

In cognitively unimpaired older adults self-report sleep is associated with brain amyloid beta (Aβ) accumulation.Across sleep characteristics, this relationship differs by apolipoprotein E (APOE) genotype.Sleep duration <6 hours is associated with faster brain Aβ accumulation in APOE ε4 carriers.Sleep efficiency < 65% is associated with faster brain Aβ accumulation in APOE ε4 non-carriers.Personalized sleep interventions should be studied for potential to slow Aβ accumulation.