The latest medical research on Skin Cancer

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about skin cancer gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images.

Skin Cancer Research

Melanoma is known as the most aggressive form of skin cancer and one of the fastest growing malignant tumors worldwide. Several computer-aided diagnosis systems for melanoma have been proposed, still, the algorithms encounter difficulties in the early stage of lesions. This paper aims to discriminate melanoma and benign skin lesion in dermoscopic images.

The proposed algorithm is based on the color and texture of skin lesions by introducing a novel feature extraction technique. The algorithm uses an automatic segmentation based on k-means generating a fairly accurate mask for each lesion. The feature extraction consists of the existing and novel color and texture attributes measuring how color and texture vary inside the lesion. To find the optimal results, all the attributes are extracted from lesions in five different color spaces (RGB, HSV, Lab, XYZ, and YCbCr) and used as the inputs for three classifiers (K nearest neighbors, support vector machine , and artificial neural network).

The PH2 set is used to assess the performance of the proposed algorithm. The results of our algorithm are compared to the results of published articles that used the same dataset, and it shows that the proposed method outperforms the state of the art by attaining a sensitivity of 99.25%, specificity of 99.58%, and accuracy of 99.51%.

The final results show that the colors combined with texture are powerful and relevant attributes for melanoma detection and show improvement over the state of the art.

Vasomotion analysis of speed resolved perfusion, oxygen saturation, red blood cell tissue fraction, and vessel diameter: Novel microvascular perspectives.

Skin Cancer Research

Vasomotion is the spontaneous oscillation in vascular tone in the microcirculation and is believed to be a physiological mechanism facilitating the transport of blood gases and nutrients to and from tissues. So far, Laser Doppler flowmetry has constituted the gold standard for in vivo vasomotion analysis.

We applied vasomotion analysis to speed-resolved perfusion, oxygen saturation, red blood cell tissue (RBC) tissue fraction, and average vessel diameter from five healthy individuals at rest measured by the newly developed Periflux 6000 EPOS system over 10 minutes. Magnitude scalogram and the time-averaged wavelet spectra were divided into frequency intervals reflecting endothelial, neurogenic, myogenic, respiratory, and cardiac function.

Recurrent high-intensity periods of the myogenic, neurogenic, and endothelial frequency intervals were found. The neurogenic activity was considerably more pronounced for the oxygen saturation, RBC tissue fraction, and vessel diameter signals, than for the perfusion signals. In a correlation analysis we found that changes in perfusion in the myogenic, neurogenic, and endothelial frequency intervals precede changes in the other signals. Furthermore, changes in average vessel diameter were in general negatively correlated to the other signals in the same frequency intervals, indicating the importance of capillary recruitment.

We conclude that vasomotion can be observed in signals reflecting speed resolved perfusion, oxygen saturation, RBC tissue fraction, and vessel diameter. The new parameters enable new aspects of the microcirculation to be observed.

A novel clinical method to measure skin staining reveals activation of skin damage pathways by cigarette smoke.

Skin Cancer Research

Long-term use of cigarettes can result in localised staining and aging of smokers' skin. The use of tobacco heating products (THPs) and electronic cigarettes (ECs) has grown on a global scale; however, the long-term effect of these products' aerosols on consumers' skin is unknown. This pilot clinical study aimed to determine whether THP or EC aerosol exposure results in skin staining or activation of biomarkers associated with oxidative stress.

Eight areas were identified on the backs of 10 subjects. Two areas were used for air control, and two areas exposed to 32-puffs of cigarette smoke (CS), THP or EC aerosols, which were delivered to the skin using a 3-cm diameter exposure chamber and smoke engine. Skin colour was measured using a Chromameter. Squalene (SQ), SQ monohydroperoxide (SQOOH) and malondialdehyde (MDA) levels were measured in sebum samples by mass spectrometry and catalase colorimetry.

CS exposure significantly increased skin staining, SQOOH and MDA levels and SQOOH/SQ ratio. THP and EC values were significantly lower than CS; EC values being comparable to air control. THP values were comparable to EC and air control at all endpoints, apart from skin staining. SQ and catalase levels did not change with exposure.

CS stained skin and activated pathways known to be associated with skin damage. THPs and ECs produced significantly lower values, suggesting they could offer hygiene and cosmetic benefits for consumers who switch exclusively from smoking cigarettes. Further studies are required to assess longer-term effects of ECs and THPs on skin function.

Psoriasis and seasonal variation: A systematic review on reports from Northern and Central Europe-Little overall variation but distinctive subsets with improvement in summer or wintertime.

Skin Cancer Research

Positive influence of the sun on psoriasis is a common assumption in dermatology. Other season-related factors such as mental health may interfere. However, the role of seasonal effects on psoriasis needs to be clarified. This review aims to systematically analyze the literature on seasonal variation on psoriasis with emphasis on Northern and Central Europe representing temperate climate conditions.

Enrolled literature was identified through PubMed, EMBASE, and BIOSIS. An additional manual search of old reports before the introduction of efficient modern therapies, which can interfere with the spontaneous disease, was performed.

Thirteen studies were enrolled. About 50% of psoriasis patients were stable and showed no seasonal difference between seasons. Approximately 30% improved in summer, and 20% performed better in winter, some with marked summer worsening. European results matched international reports from different continents and hemispheres with climate extremes. The psychological effects could not be ruled out.

About 50% of psoriasis patients experience a season-independent disease, however, with a subset of patients who do better in summer. Others again do better in winter, with a few of these having marked worsening in warm periods. Individual season-related activity records should be paid proper attention to when considering light therapy or climatotherapy as a treatment.

Evaluation of intercellular lipid lamellae in the stratum corneum by polarized microscopy.

Skin Cancer Research

Intercellular lipids contain a lamellar structure that glows in polarized images. It could be expected that the intercellular lipid content be estimated from the luminance values calculated from polarized images of stratum corneum strips. Therefore, we attempted to develop a method for simple and rapid evaluation of the intercellular lipid content through a procedure. Herein, we demonstrated a relationship between the luminance value and the amount of ceramides, one of the main components of intercellular lipids.

The stratum corneum was collected from the forearm using slides with a pure rubber-based adhesive, which did not produce unnecessary luminescence under polarizing conditions. Images were analyzed using luminance indices. The positive secondary ion peak images were obtained using the time of flight-secondary ion mass spectrometry; the polarized and brightfield images were obtained using a polarized microscope. The ceramide and protein amount was measured by high-performance liquid chromatography and bicinchoninic acid protein assay after microscope imaging. Images and quantitative values were used to construct evaluation models based on a convolutional neural network (CNN).

There was a correlation between the highlighted areas of the polarized image to overlap with the area where ceramide-derived peak was detected. Evaluation of the CNN-based model of the polarized images predicted the amount of ceramides per unit of stratum corneum.

The method proposed in the study enabled a large number of specimens to provide a simple, rapid, and efficient evaluation of the intercellular lipid content.

Image of the distribution profile of targets in skin by Raman spectroscopy-based multivariate analysis.

Skin Cancer Research

Raman spectroscopic imaging is a label-free spectral technology to investigate the distribution of transdermal targets in skin. However, it is diff...

Skin biomechanical and viscoelastic properties measured with MyotonPRO in different areas of human body.

Skin Cancer Research

There is still a lack of clinically practical device, which allows to perform rapid and accurate examination of the skin condition. For this reason, suitability of the MyotonPRO for the assessment of skin biomechanical and viscoelastic parameters was evaluated in this study. The aim of the study was to establish the reference values of five parameters measured by MyotonPRO various locations of human skin.

Oscillation frequency, dynamic stiffness, logarithmic decrement, mechanical stress relaxation and creep were measured at three different skin locations (clavicula, volar forearm and shin), using L-shape short and medium arm probes in 32 young female volunteers. Mean values of obtained parameters recorded by both probes were compared among three skin locations while reliabilities of measurements were assessed. Additionally, relationships between all recorded parameters were examined RESULTS: There were no statistically significant differences between the mean values of five measured parameters obtained with both probes in all investigated areas. However, statistically significant differences of mean values of almost all parameters measured among three places examined were found. Despite considerable differences in mean values of obtained parameters, there were visible strong correlations between some studied parameters in all three investigated areas of skin.

It was demonstrated in all locations studied that the higher value of oscillation frequency corresponds to the higher value of dynamic stiffness, moreover such tissue recovers faster to its initial shape, and it was characterized by lower creep values. Such results indicate the existence of identical relationships between the same studied parameters in different areas of skin.

A case of dermatofibrosarcoma protuberans and reflectance confocal microscopy of a post-surgical skin graft.

Skin Cancer Research

Dermatofibrosarcoma protuberans (DFSP) is an overall rare malignancy yet is one of the most common cutaneous sarcomas. The diagnosis of DFSP is typ...

Skin measurement devices to assess skin quality: A systematic review on reliability and validity.

Skin Cancer Research

Many treatments aim to slow down or reverse the visible signs of skin aging and thereby improve skin quality. Measurement devices are frequently employed to measure the effects of these treatments to improve skin quality, for example, skin elasticity, color, and texture. However, it remains unknown which of these devices is most reliable and valid.

MEDLINE, Embase, Cochrane Central, Web of Science, and Google Scholar databases were searched. Instruments were scored on reporting construct validity by means of convergent validity, interobserver, intraobserver, and interinstrument reliability.

For the evaluation of skin color, 11 studies were included describing 16 measurement devices, analyzing 3172 subjects. The most reliable device for skin color assessment is the Minolta Chromameter CR-300 due to good interobserver, intraobserver, and interinstrument reliability. For skin elasticity, seven studies assessed nine types of devices analyzing 290 subjects in total. No intra and interobserver reliability was reported. Skin texture was assessed in two studies evaluating 72 subjects using three different types of measurement devices. The PRIMOS device reported excellent intra and interobserver reliability. None of the included reviewed devices could be determined to be valid based on construct validity.

The most reliable devices to evaluate skin color and texture in ordinary skin were, respectively, the Minolta Chromameter and PRIMOS. No reliable device is available to measure skin elasticity in ordinary skin and none of the included devices could be determined to be designated as valid.

How many skin barriers haveth we: Percutaneous egression of ions?

Skin Cancer Research

Skin provides critical barrier properties that enable terrestrial life. Myriad research has focused on the "water barrier" to transepidermal water loss (TEWL) despite there being a multitude of skin barrier properties. We asked what other barrier properties may have been overlooked and compiled data demonstrating the "electrolyte barrier" to be of potential clinical relevance.

A literature search was conducted through PubMed, Embase, Google Scholar, and Web of Science databases for the following keywords: "transepidermal" or "epidermal" or "cutaneous" or "skin" or "percutaneous" and "ion" or "sodium" or "chloride" or "potassium" or "electrolyte" and "flux" or "egression." Textbooks at the University of California, San Francisco were also hand reviewed. Experimental studies quantifying in vivo or ex vivo percutaneous egression of ions in response to human skin barrier perturbation were included.

Experimental damage to skin, mostly by tape-stripping, frequently induced increased ion flux rates through the epidermis, in addition to increases in TEWL values. Interestingly, barrier perturbation did not always result in a concomitant rise in TEWL and transepidermal ion flux rates, such as in delipidization, indicating a distinction between the two barriers.

Quantifying the percutaneous egression of ions in response to physical or chemical alterations may offer additional data that are not to be captured with TEWL studies exclusively. Continued efforts should be made to: (1) advance this technique as a method of assessing skin status and (2) enhance our understanding of other barriers and mechanisms.

Can the CutiScan CS 100® measure anisotropy and viscoelasticity in scar tissue after mastectomy? A reliability and validity study.

Skin Cancer Research

Scars have different biomechanical characteristics, including anisotropy and viscoelasticity compared to healthy skin. To assess these characteristics, the CutiScan CS 100® can be used. The aim of the present study is to investigate reliability and validity of this device in breast cancer patients.

Thirty female patients, with scar adhesions following mastectomy were assessed with the CutiScan CS 100® . Maximal distensibility (pixels) (V1), after-suction return rate (pixels) (V2), and their ratio (%) (V3) at three points on and around the scar were assessed as measures of viscoelasticity. For intra- and interrater reliabilities, the intra-class correlation coefficient (ICC) and its 95% confidence intervals were calculated. The standard error of measurement (SEM) was calculated to interpret reproducibility of these measurements. To investigate criterion validity of the measurement of anisotropy, measurements in the direction of healthy skin were compared with measurements in the direction of the scar, using a paired t-test.

V1, V2, and V3 show poor to moderate intrarater reliability (ICC 0.00-0.72) and interrater reliability (ICC 0.00-0.53). The maximum displacement (V1) on the measurement point above the scar shows the best reliability (ICC 0.33-0.72). The SEM is about the same for all parameters at all three points. The paired sample t-test showed a significant difference (p < 0.05) between V1 in the direction towards the scar versus the measurement towards healthy tissue, on the point below the scar.

These first reliability and validity results of the CutiScan CS 100® for measuring anisotropy and viscoelasticity in scar tissue adhesions after mastectomy seem promising. Further research is needed addressing the limitations of the present study design.

Brain activation related to the tactile perception of touching ridged texture using fingers.

Skin Cancer Research

Humans can recognize the physical properties of objects by touching them, even when vision is unavailable. Tactile perception is important for humans in interacting with the environment. The triangular ridged textures are usually added to surface to improve the grip reliability of products, but the sharp edge of triangular ridge induces sharp and uncomfortable feeling.

To study the effect of the edge shape of triangular ridged texture on brain activity, functional magnetic resonance imaging technique was used to obtain the blood oxygen level-dependent (BOLD) signal of subjects during the touching of textured surfaces. Samples with sharp, round, and flat shape ridged textures were chosen as the tactile stimulus.

The contralateral postcentral gyrus, the precentral gyrus, the inferior parietal lobule, and the supramarginal gyrus, corresponding with the functional regions of the primary somatosensory cortex (SI), the secondary somatosensory cortex (SII), and the primary motor cortex (MI) were related to the perception of three shape ridged textures. The main brain activation located in the postcentral gyrus and the SI. The tactile information of three shape ridged textures was received by Brodmann area (BA) 3 of the SI, and then inputted to BA 2 of the SI, the further tactile discrimination of shape of ridged textures was involved in BA40 of the SII. The intensity, the areas, and the percent signal change (PSC) of brain activation that were evoked by different shape ridged textures were related to the geometric structures of the ridged textures. The more complex the geometric structures of texture are, the larger the intensity, the area, and the PSC in brain activation are. The negative BOLD responses of the ipsilateral sensory cortex that were evoked by the flat ridged texture indicated the ipsilateral neuronal inhibition within the sensory systems. The bilateral precuneus, the superior parietal gyrus, and the inferior parietal gyrus, corresponding with the functional areas of the SII (BA40) and the SSA(BA7), were involved in the tactile discriminate of the differences in shapes of ridged textures. The differences in brain activation were related to the differences in geometric structures of the ridged texture. The larger the differences in geometric structure of texture are, the larger the differences in brain activation are. This study revealed the activated location of brain related to the tactile stimulation of different edge shape of ridged textures and the relationship between the geometric structures of ridged texture and brain activities. This research contributes to optimize surface tactile characteristics on products, especially effective surface textures design for good grip.