The latest medical research on Nuclear Radiology

The research magnet gathers the latest research from around the web, based on your specialty area. Below you will find a sample of some of the most recent articles from reputable medical journals about nuclear radiology gathered by our medical AI research bot.

The selection below is filtered by medical specialty. Registered users get access to the Plexa Intelligent Filtering System that personalises your dashboard to display only content that is relevant to you.

Want more personalised results?

Request Access

Transient interruption of contrast on CT pulmonary angiography: effect of mid-inspiratory vs. end-inspiratory respiration command.

Emergency Radiology

To investigate the effects of mid-inspiratory respiration commands and other factors on transient interruption of contrast (TIC) incidence on CT pulmonary angiography.

In this retrospective study, 824 patients (mean age, 66.1 ± 15.3 years; 342 males) who had undergone CT pulmonary angiography between January 2021 and February 2023 were included. Among them, 545 and 279 patients were scanned at end- and mid-inspiratory levels, respectively. By placing a circular region of interest, CT attenuation of the main pulmonary artery (CTMPA) was recorded. Associations between several factors, including patient age, body weight, sex, respiratory command vs. TIC and severe TIC incidence (defined as CTMPA < 200 and 150 HU, respectively), were assessed using logistic regression analyses with stepwise regression selection based on Akaike's information criterion.

Mid-inspiratory respiration command, in addition to patient age and lighter body weight, had negative association with the incidence of TIC. Only patient age, lighter body weight, female sex, and larger cardiothoracic ratio were negatively associated with severe TIC incidence. Mid-inspiratory respiration commands helped reduce TIC incidence among patients aged < 65 years (p = 0.039) and those with body weight ≥ 75 kg (p = 0.005) who were at high TIC risk.

Changing the respiratory command from end- to mid-inspiratory levels, as well as patient age and body weight, was significantly associated with TIC incidence.

Topographical distribution and prevalence of basal duct-like recess sign in a cohort of Papillary Craniopharyngioma-novel findings and implications.

Neuroradiology

Basal duct-like recess (DR) sign serves as a specific marker of papillary craniopharyngiomas (PCPs) of the strictly third-ventricular (3 V) topography. Origins of this sign are poorly understood with limited validation in external cohorts.

In this retrospective study, MRIs of pathologically proven PCPs were reviewed and evaluated for tumor topography, DR sign prevalence, and morphological subtypes.

Twenty-three cases with 24 MRIs satisfied our inclusion criteria. Median age was 44.5 years with a predominant male distribution (M/F ratio 4.7:1). Overall, strictly 3 V was the commonest tumor topography (8/24, 33.3%), and tumors were most commonly solid-cystic (10/24, 41.7%). The prevalence of DR sign was 21.7% (5/23 cases), all with strictly 3 V topography and with a predominantly solid consistency. The sensitivity, specificity and positive and negative predictive value of the DR sign for strict 3 V topography was 62.5%, 100%, 100% and 84.2% respectively. New pertinent findings associated with the DR sign were observed in our cohort. This included development of the cleft-like variant of DR sign after a 9-year follow-up initially absent at baseline imaging. Additionally, cystic dilatation of the basal tumor cleft at the pituitary stalk-tumor junction and presence of a vascular structure overlapping the DR sign were noted. Relevant mechanisms, hypotheses, and implications were explored.

We confirm the DR sign as a highly specific marker of the strictly 3 V topography in PCPs. While embryological and molecular factors remain pertinent in understanding origins of the DR sign, non-embryological mechanisms may play a role in development of the cleft-like variant.

Impact of obesity-related indicators on first-pass effect in patients with ischemic stroke receiving mechanical thrombectomy.

Neuroradiology

The first-pass effect (FPE), defined as complete revascularization after a single thrombectomy pass in large vessel occlusion, is a predictor of good prognosis in patients with acute ischemic stroke (AIS) receiving mechanical thrombectomy (MT). We aimed to evaluate obesity-related indicators if possible be predictors of FPE.

We consecutively enrolled patients with AIS who were treated with MT between January 2019 and December 2021 at our institution. Baseline characteristics, procedure-related data, and laboratory test results were retrospectively analyzed. A multivariable logistic regression analysis was performed to evaluate the independent predictors of FPE.

A total of 151 patients were included in this study, of whom 47 (31.1%) had FPE. After adjusting for confounding factors, the independent predictors of achieving FPE were low levels of body mass index (BMI) (OR 0.85, 95% CI 0.748 to 0.971), non-intracranial atherosclerotic stenosis (OR 4.038, 95% CI 1.46 to 11.14), and non-internal carotid artery occlusion (OR 13.14, 95% CI 2.394 to 72.11). Patients with lower total cholesterol (TC) (< 3.11 mmol/L) were more likely to develop FPE than those with higher TC (≥ 4.63 mmol/L) (OR 4.280; 95% CI 1.24 to 14.74) CONCLUSION: Lower BMI, non-intracranial atherosclerotic stenosis, non-internal carotid artery occlusion, and lower TC levels were independently associated with increased rates of FPE in patients with AIS who received MT therapy. FPE was correlated with better clinical outcomes after MT.

Imaging approach to ingested foreign bodies in the neck.

Neuroradiology

Foreign body ingestion is a common clinical occurrence worldwide, with high morbidity in the pediatric population and in adult patients with intent...

Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography.

Neuroradiology

To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels.

One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured.

The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times.

In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.

Beyond pulmonary embolism: Alternative diagnosis and incidental findings on CT pulmonary angiography in sickle cell disease.

Emergency Radiology

Sickle cell disease (SCD) is a genetic hematological disorder associated with severe complications, such as vaso-occlusive crises, acute chest syndrome (ACS), and an increased risk of thromboembolic events, including pulmonary embolism (PE). The diagnosis of PE in SCD patients presents challenges due to the overlapping symptoms with other pulmonary conditions. Our previous study revealed that nearly 96% of computed tomography pulmonary angiography (CTPA) scans in SCD patients were negative for PE, highlighting a gap in understanding the significance of CTPA findings when PE is absent.

In this retrospective follow-up study conducted at the Salmaniya Medical Complex in Bahrain, we examined SCD patients with HbSS genotypes who underwent CTPA from January 1, 2018, to December 31, 2021, for suspected PE, but the results were negative. The aim of this study was to identify alternative diagnoses and incidental findings from CTPA scans. Experienced radiologists reviewed the CTPA images and reports to assess potential alternative diagnoses and incidental findings, incorporating an additional analysis of chest X-rays to evaluate the diagnostic value of CTPA. Incidental findings were classified based on their location and clinical significance.

Among the 230 evaluated SCD patients (average age 39.7 years; 53% male) who were CTPA negative for PE, 142 (61.7%) had identifiable alternative diagnoses, primarily pneumonia (49.1%). Notably, 88.0% of these alternative diagnoses had been previously suggested by chest radiographs. Furthermore, incidental findings were noted in 164 (71.3%) patients, with 11.0% deemed clinically significant, necessitating immediate action, and 87.8% considered potentially significant, requiring further assessment. Notable incidental findings included thoracic abnormalities such as cardiomegaly (12.2%) and an enlarged pulmonary artery (11.3%), as well as upper abdominal pathologies such as hepatomegaly (19.6%), splenomegaly (20.9%), and gallstones (10.4%).

This study underscores the limited additional diagnostic yield of CTPA for identifying alternative diagnoses to PE in SCD patients, with the majority of diagnoses, such as pneumonia, already suggested by chest radiographs. The frequent incidental findings, most of which necessitate further evaluation, highlight the need for a cautious and tailored approach to using CTPA in the SCD population.

Exploration of postural effects on the external jugular and diploic venous system using upright computed tomography scanning.

Neuroradiology

Few studies have investigated the influence of posture on the external jugular and diploic venous systems in the head and cranial region. In this study, we aimed to investigate the effects of posture on these systems using upright computed tomography (CT) scanning.

This study retrospectively analysed an upright CT dataset from a previous prospective study. In each patient, the diameters of the vessels in three external jugular tributaries and four diploic veins were measured using CT digital subtraction venography in both supine and sitting positions.

Amongst the 20 cases in the original dataset, we eventually investigated 19 cases due to motion artifacts in 1 case. Compared with the supine position, most of the external jugular tributaries collapsed, and the average size significantly decreased in the sitting position (decreased by 22-49% on average). In contrast, most of the diploic veins, except the occipital diploic veins, tended to increase or remain unchanged (increased by 12-101% on average) in size in the sitting position compared with the supine position. However, the changes in the veins associated with this positional shift were not uniform; in approximately 5-30% of the cases, depending on each vein, an opposite trend was observed.

Compared to the supine position, the contribution of external jugular tributaries to head venous drainage decreased in the sitting position, whilst most diploic veins maintained their contribution. These results could enhance our understanding of the physiology and pathophysiology of the head region in upright and sitting positions.

Mapping brain volume change across time in primary-progressive multiple sclerosis.

Neuroradiology

Detection and prediction of the rate of brain volume loss with age is a significant unmet need in patients with primary progressive multiple sclerosis (PPMS). In this study we construct detailed brain volume maps for PPMS patients. These maps compare age-related changes in both cortical and sub-cortical regions with those in healthy individuals.

We conducted retrospective analyses of brain volume using T1-weighted Magnetic Resonance Imaging (MRI) scans of a large cohort of PPMS patients and healthy subjects. The volume of brain parenchyma (BP), cortex, white matter (WM), deep gray matter, thalamus, and cerebellum were measured using the robust SynthSeg segmentation tool. Age- and gender-related regression curves were constructed based on data from healthy subjects, with the 95% prediction interval adopted as the normality threshold for each brain region.

We analyzed 495 MRI scans from 169 PPMS patients, aged 20-79 years, alongside 563 exams from healthy subjects aged 20-86. Compared to healthy subjects, a higher proportion of PPMS patients showed lower than expected brain volumes in all regions except the cerebellum. The most affected areas were BP, WM, and thalamus. Lower brain volumes correlated with longer disease duration for BP and WM, and higher disability for BP, WM, cortex, and thalamus.

Constructing age- and gender-related brain volume maps enabled identifying PPMS patients at a higher risk of brain volume loss. Monitoring these high-risk patients may lead to better treatment decisions and improve patient outcomes.

Prognostic value of radiological T category using conventional MRI in patients with oral tongue cancer: comparison with pathological T category.

Neuroradiology

This study aimed to compare the radiological tumor (T)-category using multiparametric MRI with the pathological T category in patients with oral tongue squamous cell carcinoma (OTSCC) and to examine which is a better predictor of prognosis.

This retrospective study included 110 consecutive patients with surgically resected primary OTSCC who underwent preoperative contrast-enhanced MRI. T categories determined by maximum diameter and depth of invasion were retrospectively assessed based on the pathological specimen and multiparametric MRI. The MRI assessment included the axial and coronal T1-weighted image (T1WI), axial T2-weighted image (T2WI), coronal fat-suppressed T2WI, and axial and coronal fat-suppressed contrast-enhanced T1WI (CET1WI). Axial and coronal CET1WI measurements were divided into two groups: measurements excluding peritumoral enhancement (MEP) and measurements including peritumoral enhancement. The prognostic values for recurrence and disease-specific survival after radiological and pathological T categorization of cases into T1/T2 and T3/T4 groups were compared.

The T category of MEP on coronal CET1WI was the most relevant prognostic factor for recurrence [hazard ratio (HR) = 3.30, p = 0.001] and the HR was higher than the HR for pathological assessment (HR = 2.26, p = 0.026). The T category determined by MEP on coronal CET1WI was also the most relevant prognostic factor for disease-specific survival (HR = 3.12, p = 0.03), and the HR was higher than the HR for pathological assessment (HR = 2.02, p = 0.20).

The T category determined by MEP on the coronal CET1WI was the best prognostic factor among all radiological and pathological T category measurements.

Vein of Galen aneurysmal malformation: does size affect outcome?

Neuroradiology

To validate a semiautomated method for segmenting vein of Galen aneurysmal malformations (VGAM) and to assess the relationship between VGAM volume and other angioarchitectural features, cardiological findings, and outcomes.

In this retrospective study, we selected all subjects with VGAM admitted to the Gaslini Children's Hospital between 2009 and 2022. Clinical data were retrieved from electronic charts. We compared 3D-Slicer segmented VGAM volumes obtained by two independent observers using phase-contrast MR venography to those obtained with manual measurements performed on T2-weighted images. The relationship between VGAM volumes and clinical and neuroimaging features was then explored.

Forty-three subjects with VGAM (22 males, mean age 6.56 days) were included in the study. Manual and semiautomated VGAM volumes were well correlated for both readers (r = 0.86 and 0.82, respectively). Regarding reproducibility, the inter-rater interclass correlation coefficients were 0.885 for the manual method and 0.992 for the semiautomated method (p < 0.001). The standard error for repeated measures was lower for the semiautomated method (0.04 versus 0.40 of manual method). Higher VGAM volume was associated with superior sagittal sinus narrowing, jugular bulb stenosis, and aqueductal stenosis (p < 0.05). A weak correlation was found between VGAM volume and straight sinus dilatation (r = 0.331) and superior sagittal sinus index (r =  - 0.325). No significant associations were found with cardiac findings, post-embolization complications, and outcome (p > 0.05).

Semiautomated VGAM volumetry is feasible and reliable with improved reproducibility compared to the manual method. VGAM volume is not a prognostic factor for clinical outcome, but it is related to other venous findings with potential hemodynamic effects.

Functional connectivity-hemodynamic (un)coupling changes in chronic mild brain injury are associated with mental health and neurocognitive indices: a resting state fMRI study.

Neuroradiology

To examine hemodynamic and functional connectivity alterations and their association with neurocognitive and mental health indices in patients with chronic mild traumatic brain injury (mTBI).

Resting-state functional MRI (rs-fMRI) and neuropsychological assessment of 37 patients with chronic mTBI were performed. Intrinsic connectivity contrast (ICC) and time-shift analysis (TSA) of the rs-fMRI data allowed the assessment of regional hemodynamic and functional connectivity disturbances and their coupling (or uncoupling). Thirty-nine healthy age- and gender-matched participants were also examined.

Patients with chronic mTBI displayed hypoconnectivity in bilateral hippocampi and parahippocampal gyri and increased connectivity in parietal areas (right angular gyrus and left superior parietal lobule (SPL)). Slower perfusion (hemodynamic lag) in the left anterior hippocampus was associated with higher self-reported symptoms of depression (r =  - 0.53, p = .0006) and anxiety (r =  - 0.484, p = .002), while faster perfusion (hemodynamic lead) in the left SPL was associated with lower semantic fluency (r =  - 0.474, p = .002). Finally, functional coupling (high connectivity and hemodynamic lead) in the right anterior cingulate cortex (ACC)) was associated with lower performance on attention and visuomotor coordination (r =  - 0.50, p = .001), while dysfunctional coupling (low connectivity and hemodynamic lag) in the left ventral posterior cingulate cortex (PCC) and right SPL was associated with lower scores on immediate passage memory (r =  - 0.52, p = .001; r =  - 0.53, p = .0006, respectively). Uncoupling in the right extrastriate visual cortex and posterior middle temporal gyrus was negatively associated with cognitive flexibility (r =  - 0.50, p = .001).

Hemodynamic and functional connectivity differences, indicating neurovascular (un)coupling, may be linked to mental health and neurocognitive indices in patients with chronic mTBI.

Posterior circulation ischemic stroke: radiomics-based machine learning approach to identify onset time from magnetic resonance imaging.

Neuroradiology

Posterior circulation ischemic stroke (PCIS) possesses unique features. However, previous studies have primarily or exclusively relied on anterior circulation stroke cases to build machine learning (ML) models for predicting onset time. To date, there is no research reporting the effectiveness and stability of ML in identifying PCIS onset time. We aimed to build diffusion-weighted imaging-based ML models to identify the onset time of PCIS patients.

Consecutive PCIS patients within 24 h of definite symptom onset were included (112 in the training set and 49 in the independent test set). Images were processed as follows: volume of interest segmentation, image feature extraction, and feature selection. Five ML models, naïve Bayes, logistic regression, tree ensemble, k-nearest neighbor, and random forest, were built based on the training set to estimate the stroke onset time (binary classification: ≤ 4.5 h or > 4.5 h). Relative standard deviations (RSD), receiver operating characteristic (ROC) curves, and the calibration plot was performed to evaluate the stability and performance of the five models.

The random forest model had the best performance in the test set, with the highest area under the curve (AUC, 0.840; 95% CI: 0.706, 0.974). This model also achieved the highest accuracy, sensitivity, specificity, positive predictive value, and negative predictive value (83.7%, 64.3%, 91.4%, 75.0%, and 86.5%, respectively). Furthermore, the model had high stability (RSD = 0.0094).

The PCIS case-based ML model was effective for estimating the symptom onset time and achieved considerably high specificity and stability.